All Questions Topic List
Vector Questions
Previous in All Question Next in All Question
Previous in Vector Next in Vector
Question Number 6820 by Tawakalitu. last updated on 29/Jul/16
ThepositionvectorofthepointPattimetisgivenby(αtant)i+(αsect)kwhereαispositiveconstantand0⩽t⩽Π2.ShowthatthevelocityandaccelerationofPwhent=0areatrightangletoeachother.IfAisthepointwithpositionvectorαj,obtainthevectorequationforthestraightlineAPattimet.IfthepointQdividesAPinternallyintheratio(cost):(1−cost).ShowthattheaccelerationofthepointQisconstantinmagnitudeandisalwaysdirectedtowardsafixedpoint.
Commented by Yozzii last updated on 29/Jul/16
p(t)=(αtant0αsect)α=constant>0,t∈[0,π2]⇒dpdt(t)=vp(t)=(αsec2t0αsect×tant)⇒d2pdt2(t)=ap(t)=(2αsec2t×tant0α(sect×tant×tant+sec3t))ap(t)=(2αtantsec2t0α(tan2t+sec2t)sect)vp(0)=(α00),ap(0)=(00α)∴vp(0)∙ap(0)=α×0+0×0+0×α=0Sincevp(0)∙ap(0)=0,thevelocityandaccelerationareperpendiculartoeachotheratt=0.a(t)=(0α0)DirectionvectoroflineAPisparalleltob(t)=p(t)−a(t)=(αtant−ααsect)=α(tant−1sect)So,thevectorequationofthelineAPisr=(0α0)+μ(tant−1sect)(μ∈R).ForQdividingAPintheratio(cost):(1−cost),μ=cost(OQ=OA+cost(AP))∴q(t)=(0α0)+cost(tant−1sect)q(t)=(sintα−cost1)vq(t)=dq(t)dt=(costsint0)aq(t)=dvq(t)dt=(−sintcost0)⇒∣aq(t)∣=(−sint)2+(cost)2+02=1Since∣aq(t)∣=1forallt∈[0,π2],theaccelerationofthepointQisconstantinmagnitude.SincetheaccelerationofQhasnocomponentparalleltotheunitvectork,butvariablecomponentsparalleltoiandj,aq(t)actsentirelyintheplanecontainingboththevectorsiandj.Observethatvq(t)∙aq(t)=0⇒velocityandacclerationofQarenormaltoeachother.
Commented by Tawakalitu. last updated on 30/Jul/16
Thankssomuch.iappreciateyourtime
Terms of Service
Privacy Policy
Contact: info@tinkutara.com