Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 68207 by mr W last updated on 07/Sep/19

solve for x∈C  sin x=z   (z=a+bi=re^(iθ) )

solveforxCsinx=z(z=a+bi=reiθ)

Commented by mathmax by abdo last updated on 07/Sep/19

sinx =z ⇔((e^(ix) −e^(−ix) )/(2i))=z ⇔e^(ix) −e^(−ix) =2ir e^(iθ)   let t =e^(ix)  ⇒ix =ln(t)+i2kπ   with k∈Z  (e) ⇒t−t^(−1 ) =2ir e^(iθ)  ⇒t^2 −1 =2ir e^(iθ)  t ⇒  t^2 −2ire^(iθ) t −1 =0 →Δ^′ =(ire^(iθ) )^2  +1 =−r^2 e^(2iθ)  +1  t_1 =ir e^(iθ)  +(√(1−r^2 e^(2iθ)  ))    and t_2 =ir e^(iθ) −(√(1−r^2 e^(2iθ) ))  ix =ln(t_1 )+i2kπ ⇒−x =ilnt_1 −2kπ ⇒x =−ilnt_1 +2kπ  =−iln(r e^(iθ) −i(√(1−r^2 e^(2iθ) )))+2kπ  ix =lnt_2 +i2kπ ⇒−x =ilnt_2 −2kπ ⇒x =−ilnt_2 +2kπ  =−iln(ir e^(iθ) −(√(1−r^2 e^(2iθ) )))+2kπ

sinx=zeixeix2i=zeixeix=2ireiθlett=eixix=ln(t)+i2kπwithkZ(e)tt1=2ireiθt21=2ireiθtt22ireiθt1=0Δ=(ireiθ)2+1=r2e2iθ+1t1=ireiθ+1r2e2iθandt2=ireiθ1r2e2iθix=ln(t1)+i2kπx=ilnt12kπx=ilnt1+2kπ=iln(reiθi1r2e2iθ)+2kπix=lnt2+i2kπx=ilnt22kπx=ilnt2+2kπ=iln(ireiθ1r2e2iθ)+2kπ

Answered by Smail last updated on 07/Sep/19

((e^(ix) −e^(−ix) )/2)e^(−iπ/2) =re^(iθ)   e^(2ix) −1−2re^(ix) ×e^(i(θ+π/2)) =0  (e^(ix) −re^(i(θ+π/2)) )^2 =1+r^2 e^(2i(θ+π/2))   e^(ix) =+_− (1+r^2 e^(2i(θ+π/2)) )^(1/2) +re^(i(θ+π/2))   x=−iln(re^(i(θ+π/2)) +_− (√(1+r^2 e^(2i(θ+π/2)) )))  x=−isinh^(−1) (re^(i(θ+π/2)) )

eixeix2eiπ/2=reiθe2ix12reix×ei(θ+π/2)=0(eixrei(θ+π/2))2=1+r2e2i(θ+π/2)eix=+(1+r2e2i(θ+π/2))1/2+rei(θ+π/2)x=iln(rei(θ+π/2)+1+r2e2i(θ+π/2))x=isinh1(rei(θ+π/2))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com