All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 6824 by Tawakalitu. last updated on 30/Jul/16
Solvesimultaneously1u+1v=13..........equation(i)u2v+v2u=12........equation(ii)
Commented by sou1618 last updated on 30/Jul/16
(i)v+uuv=13⇔3(u+v)=uv(ii)u3+v3uv=12⇔(u+v)(u2−uv+v2)=12uv⇔(u+v){(u+v)2−3uv}=12uvset{u+v=xuv=y(i),(ii)⇒{(1).3x=y(2).x3−3xy=12y(2)⇒x3−3x(3x)=12(3x)((1))x3−9x2−36x=0x(x−12)(x+3)=0x=0,12,−3(x,y)=(0,0)(12,36)(−3,−9)(u+v,uv)=(0,0)(12,36)(−3,−9)whenu+v=0,uv=0(i)isnotdefined(α+β,αβ)⇒z2−(α+β)z+αβ=0′ssolutionz2−12z+36=0⇒z=6z2+3z−9=0⇒z=−3±352⇒(u,v)=(6,6)(−3±352,−3∓332)∴(u,v)=(6,6)(−3±352,−3∓332).
Commented by Tawakalitu. last updated on 30/Jul/16
Thanksforyourhelp.iappreciate.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com