Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 68270 by ~ À ® @ 237 ~ last updated on 08/Sep/19

 Prove that  if  Li_2 (x)=Σ_(n=1)  (x^n /n^2 )   then  ∀ x  Li_2 (x)+Li_2 (1−x) = (π^2 /6) −ln(x)ln(1−x)    ∀ x∉[0:1] Li_2 (x)+Li_2 ((1/x)) = −(π^2 /6) −[ln(−x)]^2     Find  A=Σ_(n=1) ^∞  (ϕ^n /n^2 )  and  B=Σ_(n=1) ^∞  (2^n /n^2 )

ProvethatifLi2(x)=n=1xnn2thenxLi2(x)+Li2(1x)=π26ln(x)ln(1x)x[0:1]Li2(x)+Li2(1x)=π26[ln(x)]2FindA=n=1φnn2andB=n=12nn2

Commented by mathmax by abdo last updated on 10/Sep/19

let f(x)=l_i^2  (x)+l_i_2   (1−x)  and g(x)=(π^2 /6)−ln(x)ln(1−x)  with ∣x∣<1  we havef^′ (x)=l_i_2  ^′ (x)−l_i_2  ′(1−x) but l^′ i_2 (x)  =Σ_(n=1) ^∞  (x^(n−1) /n) =(1/x)Σ_(n=1) ^∞  (x^n /n) =−(1/x)ln(1−x) and  l_i_2  ^′ (1−x) =(1/(1−x))ln(x) ⇒f^′ (x)=−(1/x)ln(1−x)+(1/(1−x))lnx  g^′ (x) =−(1/x)ln(1−x)−(ln(x)((−1)/(1−x)))=−(1/x)ln(1−x) +(1/(1−x))ln(x)  ⇒f(x)=g(x)+c   lim_(x→1) f(x) =L_i_2  (1)+L_i_2   (0) =Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /6) ⇒c=0   lim_(x→1) g(x) =(π^2 /6) −lim_(x→1) ln(x)ln(1−x)  1−x=t ⇒lim_(x→1) ln(x)ln(1−x)=lim_(t→0) ln(1−t)lnt  =lim_(t→0)   t ln(t) ((ln(1−t))/t) =0 ⇒c =0 ⇒  L_i_2  (x)+L_i_2  (1−x)=−ln(x)ln(1−x)  perhaps tbere is a error in the question...!

letf(x)=li2(x)+li2(1x)andg(x)=π26ln(x)ln(1x)withx∣<1wehavef(x)=li2(x)li2(1x)butli2(x)=n=1xn1n=1xn=1xnn=1xln(1x)andli2(1x)=11xln(x)f(x)=1xln(1x)+11xlnxg(x)=1xln(1x)(ln(x)11x)=1xln(1x)+11xln(x)f(x)=g(x)+climx1f(x)=Li2(1)+Li2(0)=n=11n2=π26c=0limx1g(x)=π26limx1ln(x)ln(1x)1x=tlimx1ln(x)ln(1x)=limt0ln(1t)lnt=limt0tln(t)ln(1t)t=0c=0Li2(x)+Li2(1x)=ln(x)ln(1x)perhapstbereisaerrorinthequestion...!

Commented by ~ À ® @ 237 ~ last updated on 10/Sep/19

Thanks for this sir but there is none error

Thanksforthissirbutthereisnoneerror

Commented by ~ À ® @ 237 ~ last updated on 10/Sep/19

You have already proved the equality  when showing that c=0  In your conclusion you forgot  (π^2 /6) in the expression of g(x)

Youhavealreadyprovedtheequalitywhenshowingthatc=0Inyourconclusionyouforgotπ26intheexpressionofg(x)

Answered by mind is power last updated on 09/Sep/19

are you sur  for li_2 (x)+li_2 ((1/x))=−(π^2 /6_ )−[ln(−x)]^2 ...

areyousurforli2(x)+li2(1x)=π26[ln(x)]2...

Commented by ~ À ® @ 237 ~ last updated on 10/Sep/19

 I forget  something here sir: Sorry   It is   Li_2 (x)+Li_2 ((1/x))=−_ (π^2 /6) −(1/2)[ln(−x)]^2

Iforgetsomethingheresir:SorryItisLi2(x)+Li2(1x)=π2612[ln(x)]2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com