Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 68305 by TawaTawa last updated on 08/Sep/19

Commented by ajfour last updated on 10/Sep/19

Commented by ajfour last updated on 10/Sep/19

Area  S_(req) =GC_(⌣) E^(⌢)       (image distorted purposely  so that area BCG is to be   enlarged).  consider A to be center of  semicircle.  S_1 =sector area ACE^(⌢)   S_2 = area(△ABE)  S_3 = area(△BCD)  S_4 = sector area DGC^(⌢)   S_(req) =S_1 −S_2 +S_3 −S_4   C((2/5),(4/5))   ; E((1/2),(1/2)) ;  G(((2−(√6))/2), ((√6)/2))  ;  B((2/7),(5/7))  S_1 =((r^2 θ)/2)   with r=(1/2) , θ=cos^(−1) (4/5)  ⇒    S_1 =(1/8)sin^(−1) (3/5)  S_2 =(1/2)r(y_B −r)=(1/4)((5/7)−(1/2))=(3/(56))  S_3 =(1/2) determinant ((1,0,1),((2/5),(4/5),1),((2/7),(5/7),1))     =((4/5)−(5/7))+((2/7)−(8/(35)))=((28−25+10−8)/(35))    =(1/7)  S_4 =((R^2 φ)/2)  with R=1   and φ=sin^(−1) (y_C )−(π/4)     ⇒  S_4 =(1/2)sin^(−1) (4/5)−(π/8)  S_(req) =(1/8)sin^(−1) (3/5)−(3/(56))+(1/7)−(1/2)sin^(−1) (4/5)+(π/8) .

$${Area}\:\:{S}_{{req}} =\underset{\smile} {{GC}E}\:\:\:\: \\ $$$$\left({image}\:{distorted}\:{purposely}\right. \\ $$$${so}\:{that}\:{area}\:{BCG}\:{is}\:{to}\:{be} \\ $$$$\left.\:{enlarged}\right). \\ $$$${consider}\:{A}\:{to}\:{be}\:{center}\:{of} \\ $$$${semicircle}. \\ $$$${S}_{\mathrm{1}} ={sector}\:{area}\:{A}\overset{\frown} {{CE}} \\ $$$${S}_{\mathrm{2}} =\:{area}\left(\bigtriangleup{ABE}\right) \\ $$$${S}_{\mathrm{3}} =\:{area}\left(\bigtriangleup{BCD}\right) \\ $$$${S}_{\mathrm{4}} =\:{sector}\:{area}\:{D}\overset{\frown} {{GC}} \\ $$$${S}_{{req}} ={S}_{\mathrm{1}} −{S}_{\mathrm{2}} +{S}_{\mathrm{3}} −{S}_{\mathrm{4}} \\ $$$${C}\left(\frac{\mathrm{2}}{\mathrm{5}},\frac{\mathrm{4}}{\mathrm{5}}\right)\:\:\:;\:{E}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right)\:; \\ $$$${G}\left(\frac{\mathrm{2}−\sqrt{\mathrm{6}}}{\mathrm{2}},\:\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)\:\:;\:\:{B}\left(\frac{\mathrm{2}}{\mathrm{7}},\frac{\mathrm{5}}{\mathrm{7}}\right) \\ $$$${S}_{\mathrm{1}} =\frac{{r}^{\mathrm{2}} \theta}{\mathrm{2}}\:\:\:{with}\:{r}=\frac{\mathrm{1}}{\mathrm{2}}\:,\:\theta=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\Rightarrow\:\:\:\:{S}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{8}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{5}} \\ $$$${S}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{r}\left({y}_{{B}} −{r}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{5}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{3}}{\mathrm{56}} \\ $$$${S}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\begin{vmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{2}/\mathrm{5}}&{\mathrm{4}/\mathrm{5}}&{\mathrm{1}}\\{\mathrm{2}/\mathrm{7}}&{\mathrm{5}/\mathrm{7}}&{\mathrm{1}}\end{vmatrix} \\ $$$$\:\:\:=\left(\frac{\mathrm{4}}{\mathrm{5}}−\frac{\mathrm{5}}{\mathrm{7}}\right)+\left(\frac{\mathrm{2}}{\mathrm{7}}−\frac{\mathrm{8}}{\mathrm{35}}\right)=\frac{\mathrm{28}−\mathrm{25}+\mathrm{10}−\mathrm{8}}{\mathrm{35}} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{7}} \\ $$$${S}_{\mathrm{4}} =\frac{{R}^{\mathrm{2}} \phi}{\mathrm{2}}\:\:{with}\:{R}=\mathrm{1}\: \\ $$$${and}\:\phi=\mathrm{sin}^{−\mathrm{1}} \left({y}_{{C}} \right)−\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\Rightarrow\:\:{S}_{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}−\frac{\pi}{\mathrm{8}} \\ $$$${S}_{{req}} =\frac{\mathrm{1}}{\mathrm{8}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{5}}−\frac{\mathrm{3}}{\mathrm{56}}+\frac{\mathrm{1}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{5}}+\frac{\pi}{\mathrm{8}}\:. \\ $$

Commented by TawaTawa last updated on 10/Sep/19

Wow, God bless you sir.

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Answered by mr W last updated on 08/Sep/19

let side length of square=1  take A as origin and AD as x−axis.  eqn. of big circle:  (x−1)^2 +y^2 =1  eqn. of small circle:  x^2 +(y−(1/2))^2 =(1/4)  eqn. of line BD:  y=1−x    intersection of big and small circles:  (x−1)^2 +y^2 =1    ...(i)  x^2 +(y−(1/2))^2 =(1/4)   ...(ii)  (i)−(ii):  ⇒y=2x  (x−1)^2 +4x^2 =1  5x^2 −2x+1=1  x(5x−2)=0  ⇒x=0 or x=(2/5)  intersection of big circle and BD:  (x−1)^2 +(1−x)^2 =1     x^2 −2x−(1/2)=0  ⇒x=1−(√(1+(1/2)))=((2−(√6))/2)  intersection of small circle and BD:  x^2 +((1/2)−x)^2 =(1/4)   x(2x−1)=0  ⇒x=0 or x=(1/2)  big circle:  ⇒y=(√(x(2−x)))  small circle:  y=(1/2)+(√((1/4)−x^2 ))    shaded area:  A=∫_((2−(√6))/2) ^(2/5) [(√(x(2−x)))−1+x]dx+∫_(2/5) ^(1/2) [(1/2)+(√((1/4)−x^2 ))−1+x]dx  A=∫_((2−(√6))/2) ^(2/5) [(√(x(2−x)))−1+x]dx+∫_(2/5) ^(1/2) [(√((1/4)−x^2 ))−(1/2)+x]dx  A=[(((x−1)(√(x(2−x)))+sin^(−1) (x−1))/2)−x+(x^2 /2)]_((2−(√6))/2) ^(2/5) +[((sin^(−1) (2x))/8)+((x(√((1/4)−x^2 )))/2)−(x/2)+(x^2 /2)]_(2/5) ^(1/2)   ......

$${let}\:{side}\:{length}\:{of}\:{square}=\mathrm{1} \\ $$$${take}\:{A}\:{as}\:{origin}\:{and}\:{AD}\:{as}\:{x}−{axis}. \\ $$$${eqn}.\:{of}\:{big}\:{circle}: \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${eqn}.\:{of}\:{small}\:{circle}: \\ $$$${x}^{\mathrm{2}} +\left({y}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${eqn}.\:{of}\:{line}\:{BD}: \\ $$$${y}=\mathrm{1}−{x} \\ $$$$ \\ $$$${intersection}\:{of}\:{big}\:{and}\:{small}\:{circles}: \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\:\:\:\:...\left({i}\right) \\ $$$${x}^{\mathrm{2}} +\left({y}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\Rightarrow{y}=\mathrm{2}{x} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}=\mathrm{1} \\ $$$${x}\left(\mathrm{5}{x}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{0}\:{or}\:{x}=\frac{\mathrm{2}}{\mathrm{5}} \\ $$$${intersection}\:{of}\:{big}\:{circle}\:{and}\:{BD}: \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{1}−{x}\right)^{\mathrm{2}} =\mathrm{1}\:\:\: \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{1}−\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{2}−\sqrt{\mathrm{6}}}{\mathrm{2}} \\ $$$${intersection}\:{of}\:{small}\:{circle}\:{and}\:{BD}: \\ $$$${x}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}}−{x}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\: \\ $$$${x}\left(\mathrm{2}{x}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{0}\:{or}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${big}\:{circle}: \\ $$$$\Rightarrow{y}=\sqrt{{x}\left(\mathrm{2}−{x}\right)} \\ $$$${small}\:{circle}: \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−{x}^{\mathrm{2}} } \\ $$$$ \\ $$$${shaded}\:{area}: \\ $$$${A}=\int_{\frac{\mathrm{2}−\sqrt{\mathrm{6}}}{\mathrm{2}}} ^{\frac{\mathrm{2}}{\mathrm{5}}} \left[\sqrt{{x}\left(\mathrm{2}−{x}\right)}−\mathrm{1}+{x}\right]{dx}+\int_{\frac{\mathrm{2}}{\mathrm{5}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left[\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−{x}^{\mathrm{2}} }−\mathrm{1}+{x}\right]{dx} \\ $$$${A}=\int_{\frac{\mathrm{2}−\sqrt{\mathrm{6}}}{\mathrm{2}}} ^{\frac{\mathrm{2}}{\mathrm{5}}} \left[\sqrt{{x}\left(\mathrm{2}−{x}\right)}−\mathrm{1}+{x}\right]{dx}+\int_{\frac{\mathrm{2}}{\mathrm{5}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left[\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}+{x}\right]{dx} \\ $$$${A}=\left[\frac{\left({x}−\mathrm{1}\right)\sqrt{{x}\left(\mathrm{2}−{x}\right)}+\mathrm{sin}^{−\mathrm{1}} \left({x}−\mathrm{1}\right)}{\mathrm{2}}−{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\frac{\mathrm{2}−\sqrt{\mathrm{6}}}{\mathrm{2}}} ^{\frac{\mathrm{2}}{\mathrm{5}}} +\left[\frac{\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}{\mathrm{8}}+\frac{{x}\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−{x}^{\mathrm{2}} }}{\mathrm{2}}−\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\frac{\mathrm{2}}{\mathrm{5}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$...... \\ $$

Commented by TawaTawa last updated on 08/Sep/19

Wow, thanks for your time sir.  God bless you.  Waiting for the rest sir

$$\mathrm{Wow},\:\mathrm{thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}.\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$$$\mathrm{Waiting}\:\mathrm{for}\:\mathrm{the}\:\mathrm{rest}\:\mathrm{sir} \\ $$

Commented by TawaTawa last updated on 10/Sep/19

This area is too tough. The integration formed is complex.

$$\mathrm{This}\:\mathrm{area}\:\mathrm{is}\:\mathrm{too}\:\mathrm{tough}.\:\mathrm{The}\:\mathrm{integration}\:\mathrm{formed}\:\mathrm{is}\:\mathrm{complex}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com