Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 68342 by Tony Lin last updated on 09/Sep/19

Commented by Tony Lin last updated on 09/Sep/19

when m slide to the bottom  if there is no fraction  find v_m &v_M   find a_m &a_M

whenmslidetothebottomifthereisnofractionfindvm&vMfindam&aM

Answered by mr W last updated on 09/Sep/19

Commented by mr W last updated on 10/Sep/19

METHOD 1  position of block M: x  a_M =(d^2 x/dt^2 )  position of block m:  x_m =x+s cos θ  y_m =s sin θ  a_(m,x) =a_M +a cos θ with a=(d^2 s/dt^2 )  a_(m,y) =a sin θ    Ma_M =N sin θ  ⇒N=((Ma_M )/(sin θ))  ma_(m,x) =−N sin θ  m(a_M +a cos θ)=−N sin θ  Ma_M =N sin θ  ⇒((M/m)+1)a_M +a cos θ=0   ...(i)    ma_(m,y) =−mg+N cos θ  ma sin θ=−mg+N cos θ  ⇒(M/m)×(a_M /(tan θ))−a sin θ=g   ...(ii)    ⇒a_M =((g sin θ cos θ)/((M/m)+sin^2  θ))  ⇒a=−((g((M/m)+1)sin θ)/((M/m)+sin^2  θ))  ⇒a_(m,x) =−((g(M/m)sin θ cos θ)/((M/m)+sin^2  θ))  ⇒a_(m,y) =−((g((M/m)+1)sin^2  θ)/((M/m)+sin^2  θ))  v_(m,y) =(√(2ha_(m,y) ))  ⇒v_(m,y) =sin θ(√((2hg((M/m)+1))/((M/m)+sin^2  θ)))    v_(m,x) =(√((2ha_(m,x) )/(tan θ)))  ⇒v_(m,x) =cos θ(√((2hg(M/m))/((M/m)+sin^2  θ)))

METHOD1positionofblockM:xaM=d2xdt2positionofblockm:xm=x+scosθym=ssinθam,x=aM+acosθwitha=d2sdt2am,y=asinθMaM=NsinθN=MaMsinθmam,x=Nsinθm(aM+acosθ)=NsinθMaM=Nsinθ(Mm+1)aM+acosθ=0...(i)mam,y=mg+Ncosθmasinθ=mg+NcosθMm×aMtanθasinθ=g...(ii)aM=gsinθcosθMm+sin2θa=g(Mm+1)sinθMm+sin2θam,x=gMmsinθcosθMm+sin2θam,y=g(Mm+1)sin2θMm+sin2θvm,y=2ham,yvm,y=sinθ2hg(Mm+1)Mm+sin2θvm,x=2ham,xtanθvm,x=cosθ2hgMmMm+sin2θ

Commented by Tony Lin last updated on 10/Sep/19

thanks sir

thankssir

Answered by mr W last updated on 09/Sep/19

Commented by mr W last updated on 09/Sep/19

METHOD 2  Ma_M =N sin θ  ⇒N=((Ma_M )/(sin θ))    N+ma_M sin θ=mg cos θ  ((Ma_M )/(sin θ))+ma_M sin θ=mg cos θ  ((M/m)+sin^2  θ)a_M =g sin θcos θ  ⇒a_M =((g sin θ cos θ)/((M/m)+sin^2  θ))    ma_M cos θ+mg sin θ=ma  a=a_M cos θ+g sin θ  ⇒a=((g((M/m)+1)sin θ)/((M/m)+sin^2  θ))  a_(m,x) =a cos θ−a_M =((g((M/m)+1)sin θ cos θ)/((M/m)+sin^2  θ))−((g sin θ cos θ)/((M/m)+sin^2  θ))  ⇒a_(m,x) =(((M/m)g sin θ cos θ)/((M/m)+sin^2  θ))  a_(m,y) =a sin θ  ⇒a_(m,y) =((g((M/m)+1)sin^2  θ)/((M/m)+sin^2  θ))

METHOD2MaM=NsinθN=MaMsinθN+maMsinθ=mgcosθMaMsinθ+maMsinθ=mgcosθ(Mm+sin2θ)aM=gsinθcosθaM=gsinθcosθMm+sin2θmaMcosθ+mgsinθ=maa=aMcosθ+gsinθa=g(Mm+1)sinθMm+sin2θam,x=acosθaM=g(Mm+1)sinθcosθMm+sin2θgsinθcosθMm+sin2θam,x=MmgsinθcosθMm+sin2θam,y=asinθam,y=g(Mm+1)sin2θMm+sin2θ

Commented by Tony Lin last updated on 10/Sep/19

thanks sir

thankssir

Answered by Tanmay chaudhury last updated on 09/Sep/19

Commented by Tanmay chaudhury last updated on 09/Sep/19

Mg+Ncosθ=N_G   MA=Nsinθ  for m  mgsinθ+mAcosθ=ma  mgcosθ=N+mAsinθ  MA=sinθ(mgcosθ−mAsinθ)  A(M+msin^2 θ)=mgsinθcosθ  A=((mgsinθcosθ)/(M+msin^2 θ))  A=acc of wedge  a=gsinθ+(((mgsinθcosθ)/(M+msin^2 θ)))cosθ  a=((Mgsinθ+mgsin^3 θ+mgsinθcos^2 θ)/(M+msin^2 θ))  a=((Mgsinθ+mgsinθ(sin^2 θ+cos^2 θ))/(M+msin^2 θ))  a=(((M+m)gsinθ)/(M+msin^2 θ))

Mg+Ncosθ=NGMA=Nsinθformmgsinθ+mAcosθ=mamgcosθ=N+mAsinθMA=sinθ(mgcosθmAsinθ)A(M+msin2θ)=mgsinθcosθA=mgsinθcosθM+msin2θA=accofwedgea=gsinθ+(mgsinθcosθM+msin2θ)cosθa=Mgsinθ+mgsin3θ+mgsinθcos2θM+msin2θa=Mgsinθ+mgsinθ(sin2θ+cos2θ)M+msin2θa=(M+m)gsinθM+msin2θ

Commented by Tony Lin last updated on 10/Sep/19

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com