Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68434 by mhmd last updated on 10/Sep/19

Answered by mind is power last updated on 10/Sep/19

∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  let f(x)=((3sin(x)−2sin^2 (x))/(sin(x)+cos(x)))  ∫_(π/6) ^(π/3) f(x)dx=∫_(π/6) ^(π/3) f((π/2)−x)dx=∫_(π/6) ^(π/3) ((3cos(x)−2cos^3 (x))/(sin(x)+cos(x)))dx  2∫_(π/6) ^(π/3) f(x)dx=∫_(π/6) ^(π/3) ((3sin(x)−2sin^2 (x))/(cos(x)+sin(x)))dx+∫_(π/6) ^(π/3) ((3cos(x)−2cos^3 (x))/(cos(x)+sin(x)))dx  =∫_(π/6) ^(π/3) ((3sin(x)+cos(x)−2sin^3 (x)−2cos^3 (x))/(sin(x)+cos(x)))dx  =∫_(π/6) ^(π/3) ((3(sin(x)+cos(x))−2(sin(x)+cos(x))(sin^2 (x)+cos^2 (x)−cos(x)sin(x)))/(sin(x)+cos(x)))dx  =∫_(π/6) ^(π/3) 3−2(1+sin(x)cos(x))dx  =∫_(π/6) ^(π/3) 1−2sin(x)cos(x)dx=[x+cos^2 (x)]_(π/6) ^(π/3) =(π/6)+(1/4)−(3/4)=((π−3)/6)

abf(x)dx=abf(a+bx)dxletf(x)=3sin(x)2sin2(x)sin(x)+cos(x)π6π3f(x)dx=π6π3f(π2x)dx=π6π33cos(x)2cos3(x)sin(x)+cos(x)dx2π6π3f(x)dx=π6π33sin(x)2sin2(x)cos(x)+sin(x)dx+π6π33cos(x)2cos3(x)cos(x)+sin(x)dx=π6π33sin(x)+cos(x)2sin3(x)2cos3(x)sin(x)+cos(x)dx=π6π33(sin(x)+cos(x))2(sin(x)+cos(x))(sin2(x)+cos2(x)cos(x)sin(x))sin(x)+cos(x)dx=π6π332(1+sin(x)cos(x))dx=π6π312sin(x)cos(x)dx=[x+cos2(x)]π6π3=π6+1434=π36

Terms of Service

Privacy Policy

Contact: info@tinkutara.com