Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 68451 by mr W last updated on 10/Sep/19

Commented by mr W last updated on 11/Sep/19

if M=0, the block m just has free  fall, therefore T=(√(2gh))=(√(2gR)).

ifM=0,theblockmjusthasfreefall,thereforeT=2gh=2gR.

Commented by ajfour last updated on 11/Sep/19

sorry sir my mistake first,  it matched but in the end i  typed in (√(2gR))  it is time not  velocity  it is (√((2R)/g))   (ha..ha)  By the way please check, i got  some answer for fixed wedge too.

sorrysirmymistakefirst,itmatchedbutintheenditypedin2gRitistimenotvelocityitis2Rg(ha..ha)Bythewaypleasecheck,igotsomeanswerforfixedwedgetoo.

Commented by mr W last updated on 10/Sep/19

the block m is released at the top of  the wedge. there is no friction.    find the velocity of both objects when  the small block reaches the bottom  of the wedge.

theblockmisreleasedatthetopofthewedge.thereisnofriction.findthevelocityofbothobjectswhenthesmallblockreachesthebottomofthewedge.

Commented by ajfour last updated on 11/Sep/19

Commented by ajfour last updated on 11/Sep/19

Lets try and find time it takes  to slip down.  N+mAcos θ−mgsin θ=((mv_r ^2 )/R)  mAsin θ+mgcos θ=((mv_r dv_r )/(Rdθ))  Ncos θ=MA  ⇒  if we let M=μm  μAsec θ+Acos θ−gsin θ=(v_r ^2 /R)    ..(i)  Asin θ+gcos θ=((v_r dv_r )/(Rdθ))  ⇒ A=(((v_r dv_r )/(Rdθ))−gcos θ)cosec θ  ...(ii)  ⇒  (μsec θ+cos θ)(((v_r dv_r )/(Rdθ))−gcos θ)cosec θ     −gsin θ=(v_r ^2 /R)  let  v_r ^2 /R=2s  ⇒ v_r dv_r /R=ds  Now   (μsec θ+cos θ)(cosec θ)(ds/dθ)−2s    = gsin θ+gcos θcosec θ(μsec θ+cos θ)  or  (ds/dθ)−((2s(sin θ))/((μsec θ+cos θ)))           =g(((sin^2 θ)/(μsec θ+cos θ))+cos θ)  ⇒  (ds/(cos θdθ))−((2s(sin θ))/((μ+cos^2 θ)))             =g(1+((sin^2 θ)/(μ+cos^2 θ)))  let  sin θ=u  ⇒  cos θdθ=du  ⇒    (ds/du)−((2su)/(μ+1−u^2 ))=((g(μ+1))/(μ+1−u^2 ))  let  μ+1=λ   ⇒    (ds/du)+((2su)/(u^2 −λ))=((λg)/(λ−u^2 ))  ⇒  (u^2 −λ)(ds/du)+2su=−λg  ⇒ ∫_0 ^( s(u^2 −λ)) d[s(u^2 −λ)]=−λg∫_0 ^( u) du  ⇒ s(u^2 −λ)=−λgu  ⇒ [ (v_r ^2 /(2R))(sin^2 θ−λ)=−λgsin θ]  but if we continue with same  variable u=sin θ, then  ⇒ v_r =((d(Rdθ))/dt)=(√(2sR)) = (√(2R(((λgu)/(λ−u^2 )))))  ∫_0 ^(  T) dt =∫_0 ^( 1) ((Rdu)/(√(1−u^2 )))(√((λ−u^2 )/(2λgRu)))  T=(√(R/(2λg)))∫_0 ^( 1) (√((λ−u^2 )/(u(1−u^2 )))) du  If wedge is far too heavier, then  it is as good as fixed;  μ=(M/m)→∞  T=(√(R/(2g)))∫_0 ^( 1) (du/(√(u(1−u^2 ))))      =t_0 ∫_0 ^( π/2) ((cos θdθ)/(√(sin θcos^2 θ)))      =t_0 ∫_0 ^( π/2) (dθ/(√(sin θ)))   let sin θ=t^2   ⇒  2tdt=cos θdθ  ⇒   dθ=((2tdt)/(√(1−t^2 )))     T=t_0 ∫_0 ^( 1) ((2tdt)/(t(√(1−t^2 )))) = 2t_0 ∫_0 ^( 1) (dt/(√(1−t^2 )))       =2t_0 ((π/2)) =πt_0     T=π(√(R/(2g)))  !  If there is a very light wedge     (just to check)  μ=(M/m) →0 ⇒ λ→1  T=(√(R/(2g)))∫_0 ^( 1)  (du/(√u))       T= (√((2R)/g))  (fabulous!)  but i think otherwise solving the   integration is beyond my  understanding..

Letstryandfindtimeittakestoslipdown.N+mAcosθmgsinθ=mvr2RmAsinθ+mgcosθ=mvrdvrRdθNcosθ=MAifweletM=μmμAsecθ+Acosθgsinθ=vr2R..(i)Asinθ+gcosθ=vrdvrRdθA=(vrdvrRdθgcosθ)cosecθ...(ii)(μsecθ+cosθ)(vrdvrRdθgcosθ)cosecθgsinθ=vr2Rletvr2/R=2svrdvr/R=dsNow(μsecθ+cosθ)(cosecθ)dsdθ2s=gsinθ+gcosθcosecθ(μsecθ+cosθ)ordsdθ2s(sinθ)(μsecθ+cosθ)=g(sin2θμsecθ+cosθ+cosθ)dscosθdθ2s(sinθ)(μ+cos2θ)=g(1+sin2θμ+cos2θ)letsinθ=ucosθdθ=dudsdu2suμ+1u2=g(μ+1)μ+1u2letμ+1=λdsdu+2suu2λ=λgλu2(u2λ)dsdu+2su=λg0s(u2λ)d[s(u2λ)]=λg0udus(u2λ)=λgu[vr22R(sin2θλ)=λgsinθ]butifwecontinuewithsamevariableu=sinθ,thenvr=d(Rdθ)dt=2sR=2R(λguλu2)0Tdt=01Rdu1u2λu22λgRuT=R2λg01λu2u(1u2)duIfwedgeisfartooheavier,thenitisasgoodasfixed;μ=MmT=R2g01duu(1u2)=t00π/2cosθdθsinθcos2θ=t00π/2dθsinθletsinθ=t22tdt=cosθdθdθ=2tdt1t2T=t0012tdtt1t2=2t001dt1t2=2t0(π2)=πt0T=πR2g!Ifthereisaverylightwedge(justtocheck)μ=Mm0λ1T=R2g01duuT=2Rg(fabulous!)butithinkotherwisesolvingtheintegrationisbeyondmyunderstanding..

Commented by mr W last updated on 11/Sep/19

thanks sir for solving!  can we find the time if the wedge is  fixed on the ground?

thankssirforsolving!canwefindthetimeifthewedgeisfixedontheground?

Commented by mr W last updated on 11/Sep/19

fantastic sir! correct result.

fantasticsir!correctresult.

Answered by ajfour last updated on 10/Sep/19

mgR=(1/2)mv^2 +(1/2)MV^( 2)   mv=MV  2mgR=[m+M((m/M))^2 ]v^2   v=(√((2MgR)/(M+m)))    ,  V=(√((2mgR)/(M+m))) .

mgR=12mv2+12MV2mv=MV2mgR=[m+M(mM)2]v2v=2MgRM+m,V=2mgRM+m.

Commented by mr W last updated on 11/Sep/19

simple and direct, great!

simpleanddirect,great!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com