Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 68466 by mathmax by abdo last updated on 11/Sep/19

let f(x) =∫_x^  ^(x^2 −x)  arctan(e^(−x−t) )dt  calculate f^′ (x)   and f^′ (0).

$${let}\:{f}\left({x}\right)\:=\int_{{x}^{} } ^{{x}^{\mathrm{2}} −{x}} \:{arctan}\left({e}^{−{x}−{t}} \right){dt} \\ $$$${calculate}\:{f}^{'} \left({x}\right)\:\:\:{and}\:{f}^{'} \left(\mathrm{0}\right). \\ $$

Commented by mathmax by abdo last updated on 11/Sep/19

we have g(x,t)=arctan(e^(−x−t) )   ,u(x)=x and v(x)=x^2 −x ⇒  f^′ (x) =∫_(u(x)) ^(v(x)) (∂g/∂x)(x,t)dt +v^′ g(x,v)−u^′ g(x,u)  =∫_x ^(x^2 −x)   ((−e^(−x−t) )/(1+e^(−2x−2t) ))dt  +(2x−1)g(x,x^2 −x)−g(x,x)  =−e^(−x)  ∫_x ^(x^2 −x)   (e^(−t) /(1+e^(−2t−2x) ))dt  +(2x−1)arctan(e^(−x^2 ) )  −arctan(e^(−2x) )  let find I =∫_x ^(x^2 −x)  (e^(−t) /(1+e^(−2t−2x) ))dt ⇒  I =∫_x ^(x^2 −1)   (e^t /(e^(2t) +e^(−2x) )) dt   =_(e^t =u)      ∫_e^x  ^e^(x^2 −x)      (u/(u^2  +e^(−2x) )) (du/u)  =∫_e^x  ^e^(x^2 −x)    (du/(u^2  +e^(−2x) )) =_(u=e^(−x)  z)     ∫_e^(2x)  ^e^x^2       ((e^(−x) dz)/(e^(−2x) (z^2 +1))) =e^x [arctanz]_e^(2x)  ^e^x^2     =e^x { arctan(e^x^2  )−arctan(e^(2x) )} ⇒  f^′ (x) =−arctan(e^x^2  )+e^(−x)  arctan(e^(2x) )+(2x−1)arctan(e^(−x^2 ) )  −arctan(e^(−2x) ) .

$${we}\:{have}\:{g}\left({x},{t}\right)={arctan}\left({e}^{−{x}−{t}} \right)\:\:\:,{u}\left({x}\right)={x}\:{and}\:{v}\left({x}\right)={x}^{\mathrm{2}} −{x}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\int_{{u}\left({x}\right)} ^{{v}\left({x}\right)} \frac{\partial{g}}{\partial{x}}\left({x},{t}\right){dt}\:+{v}^{'} {g}\left({x},{v}\right)−{u}^{'} {g}\left({x},{u}\right) \\ $$$$=\int_{{x}} ^{{x}^{\mathrm{2}} −{x}} \:\:\frac{−{e}^{−{x}−{t}} }{\mathrm{1}+{e}^{−\mathrm{2}{x}−\mathrm{2}{t}} }{dt}\:\:+\left(\mathrm{2}{x}−\mathrm{1}\right){g}\left({x},{x}^{\mathrm{2}} −{x}\right)−{g}\left({x},{x}\right) \\ $$$$=−{e}^{−{x}} \:\int_{{x}} ^{{x}^{\mathrm{2}} −{x}} \:\:\frac{{e}^{−{t}} }{\mathrm{1}+{e}^{−\mathrm{2}{t}−\mathrm{2}{x}} }{dt}\:\:+\left(\mathrm{2}{x}−\mathrm{1}\right){arctan}\left({e}^{−{x}^{\mathrm{2}} } \right) \\ $$$$−{arctan}\left({e}^{−\mathrm{2}{x}} \right)\:\:{let}\:{find}\:{I}\:=\int_{{x}} ^{{x}^{\mathrm{2}} −{x}} \:\frac{{e}^{−{t}} }{\mathrm{1}+{e}^{−\mathrm{2}{t}−\mathrm{2}{x}} }{dt}\:\Rightarrow \\ $$$${I}\:=\int_{{x}} ^{{x}^{\mathrm{2}} −\mathrm{1}} \:\:\frac{{e}^{{t}} }{{e}^{\mathrm{2}{t}} +{e}^{−\mathrm{2}{x}} }\:{dt}\:\:\:=_{{e}^{{t}} ={u}} \:\:\:\:\:\int_{{e}^{{x}} } ^{{e}^{{x}^{\mathrm{2}} −{x}} } \:\:\:\:\frac{{u}}{{u}^{\mathrm{2}} \:+{e}^{−\mathrm{2}{x}} }\:\frac{{du}}{{u}} \\ $$$$=\int_{{e}^{{x}} } ^{{e}^{{x}^{\mathrm{2}} −{x}} } \:\:\frac{{du}}{{u}^{\mathrm{2}} \:+{e}^{−\mathrm{2}{x}} }\:=_{{u}={e}^{−{x}} \:{z}} \:\:\:\:\int_{{e}^{\mathrm{2}{x}} } ^{{e}^{{x}^{\mathrm{2}} } } \:\:\:\:\frac{{e}^{−{x}} {dz}}{{e}^{−\mathrm{2}{x}} \left({z}^{\mathrm{2}} +\mathrm{1}\right)}\:={e}^{{x}} \left[{arctanz}\right]_{{e}^{\mathrm{2}{x}} } ^{{e}^{{x}^{\mathrm{2}} } } \\ $$$$={e}^{{x}} \left\{\:{arctan}\left({e}^{{x}^{\mathrm{2}} } \right)−{arctan}\left({e}^{\mathrm{2}{x}} \right)\right\}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=−{arctan}\left({e}^{{x}^{\mathrm{2}} } \right)+{e}^{−{x}} \:{arctan}\left({e}^{\mathrm{2}{x}} \right)+\left(\mathrm{2}{x}−\mathrm{1}\right){arctan}\left({e}^{−{x}^{\mathrm{2}} } \right) \\ $$$$−{arctan}\left({e}^{−\mathrm{2}{x}} \right)\:. \\ $$

Commented by mathmax by abdo last updated on 11/Sep/19

f^′ (0) =−(π/4)+(π/4)−(π/4)−(π/4) ⇒f^′ (0) =−(π/2)

$${f}^{'} \left(\mathrm{0}\right)\:=−\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{4}}\:\Rightarrow{f}^{'} \left(\mathrm{0}\right)\:=−\frac{\pi}{\mathrm{2}} \\ $$

Answered by meme last updated on 11/Sep/19

f^′ (x)=arctan(e^(−x−x^2 +x) )−arctan(e^(−x−x) )             = arctan(e^(−x^2 ) )−arctan(e^(−2x) )      f^′ (0)=arctan(1)−arctan(1)                 = 0

$${f}^{'} \left({x}\right)={arctan}\left({e}^{−{x}−{x}^{\mathrm{2}} +{x}} \right)−{arctan}\left({e}^{−{x}−{x}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:{arctan}\left({e}^{−{x}^{\mathrm{2}} } \right)−{arctan}\left({e}^{−\mathrm{2}{x}} \right) \\ $$$$\:\:\:\:{f}^{'} \left(\mathrm{0}\right)={arctan}\left(\mathrm{1}\right)−{arctan}\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{0} \\ $$

Commented by turbo msup by abdo last updated on 11/Sep/19

your answer is not correct sir.

$${your}\:{answer}\:{is}\:{not}\:{correct}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com