Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68470 by mathmax by abdo last updated on 11/Sep/19

find the value of ∫_0 ^∞   ((arctan(2x^2 ))/(x^2  +4))dx

findthevalueof0arctan(2x2)x2+4dx

Commented by mathmax by abdo last updated on 11/Sep/19

let I =∫_0 ^∞   ((arctan(2x^2 ))/(x^2  +4))dx  changement x =2t give  I =∫_0 ^∞  ((artan(8t^2 ))/(4(1+t^2 ))) (2dt) =(1/2) ∫_0 ^∞   ((arctan(8t^2 ))/(1+t^2 ))dt  =(1/4)∫_(−∞) ^(+∞)  ((arctan(8t^2 ))/(t^2  +1))dt  let f(x) =∫_(−∞) ^(+∞)  ((arctan(xt^2 ))/(t^2  +1))dt with x≥0  we have f^′ (x) =∫_(−∞) ^(+∞)   (t^2 /((1+x^2 t^4 )(t^2  +1)))dt  let W(z)=(z^2 /((z^2  +1)(x^2 z^4  +1)))  W(z) =(z^2 /((z^2  +1)x^2 (z^4  +(1/x^2 )))) =(z^2 /(x^2 (z−i)(z+i)(z^2 −(i/x))(z^2 +(i/x))))  =(z^2 /(x^2 (z−i)(z+i)(z−(1/((√x) ))e^((iπ)/4) )(z+(1/(√x))e^((iπ)/4) )(z−(1/(√x))e^(−((iπ)/4)) )(z+(1/(√x))e^(−((iπ)/4)) )))  so the poles of W are +^− i  and +^− (1/(√x))e^((iπ)/4)  and +^− (1/(√x))e^(−((iπ)/4))   ∫_(−∞) ^(+∞)  W(z)dz =2iπ{Res(W,i)+Res(W,(1/(√x))e^((iπ)/4) )+Res(W,−(1/(√x))e^(−((iπ)/4)) )}  Res(W,i) =((−1)/(x^2 (2i)(1+(1/x^2 )))) =((−1)/(2i(x^2  +1)))  Res(W,(1/(√x))e^((iπ)/4) ) =(i/(x^3 (i+1)((2/(√x))e^((iπ)/4) )(i+(i/x)))) =(1/((1+i)x^3 (1+(1/x))(2/(√x))))e^(−((iπ)/4))   =(((√x)e^(−((iπ)/4)) )/(2(1+i)(x^3  +x^2 )))  Res(W,−(1/(√x))e^(−((iπ)/4)) ) =((−i)/(x^3 (−i+1)(−(2/(√x))e^(−((iπ)/4)) )(−i+(i/x))))  =((√x)/(x^3 (i−1)(1−(1/x))2 e^(−((iπ)/4)) )) =(((√x)e^((iπ)/4) )/(2(i−1)(x^3 −x^2 ))) ⇒  ∫_(−∞) ^(+∞)   W(z)dz =2iπ{  −(1/(2i(x^2  +1))) +(((√x)e^(−((iπ)/4)) )/(2(1+i)(x^3  +x^2 )))−(((√x)e^((iπ)/4) )/(2(1−i)(x^3 −x^2 )))}  =2iπ{ −(1/(2i(x^2  +1))) +(((√x)(1−i))/(4(x^3  +x^2 )))e^(−((iπ)/4))  −(((√x)(1+i)e^((iπ)/4) )/(4(x^3  −x^2 )))}  =−(π/(x^(2 ) +1)) +((iπ(1−i)(√x))/(2(x^3  +x^2 )))e^(−((iπ)/4))    −((iπ(1+i)(√x)e^((iπ)/4) )/(2(x^3 −x^2 )))  ....be continued...

letI=0arctan(2x2)x2+4dxchangementx=2tgiveI=0artan(8t2)4(1+t2)(2dt)=120arctan(8t2)1+t2dt=14+arctan(8t2)t2+1dtletf(x)=+arctan(xt2)t2+1dtwithx0wehavef(x)=+t2(1+x2t4)(t2+1)dtletW(z)=z2(z2+1)(x2z4+1)W(z)=z2(z2+1)x2(z4+1x2)=z2x2(zi)(z+i)(z2ix)(z2+ix)=z2x2(zi)(z+i)(z1xeiπ4)(z+1xeiπ4)(z1xeiπ4)(z+1xeiπ4)sothepolesofWare+iand+1xeiπ4and+1xeiπ4+W(z)dz=2iπ{Res(W,i)+Res(W,1xeiπ4)+Res(W,1xeiπ4)}Res(W,i)=1x2(2i)(1+1x2)=12i(x2+1)Res(W,1xeiπ4)=ix3(i+1)(2xeiπ4)(i+ix)=1(1+i)x3(1+1x)2xeiπ4=xeiπ42(1+i)(x3+x2)Res(W,1xeiπ4)=ix3(i+1)(2xeiπ4)(i+ix)=xx3(i1)(11x)2eiπ4=xeiπ42(i1)(x3x2)+W(z)dz=2iπ{12i(x2+1)+xeiπ42(1+i)(x3+x2)xeiπ42(1i)(x3x2)}=2iπ{12i(x2+1)+x(1i)4(x3+x2)eiπ4x(1+i)eiπ44(x3x2)}=πx2+1+iπ(1i)x2(x3+x2)eiπ4iπ(1+i)xeiπ42(x3x2)....becontinued...

Commented by mathmax by abdo last updated on 11/Sep/19

another easy method but need a proof   let I =∫_0 ^∞   ((arctan(2x^2 ))/(x^2  +4))dx ⇒2I =∫_(−∞) ^(+∞)  ((arctan(2x^2 ))/(x^2  +4))dx let  ϕ(z) =((arctan(2z^2 ))/(z^2  +4)) ⇒ϕ(z) =((arctan(z^2 ))/((z−2i)(z+2i)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,2i)  and Res(ϕ,2i) =((∣arctan(−4)∣)/(4i))  =((arctan(4))/(4i)) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×((arctan(4))/(4i)) =(π/2) arctan(4).

anothereasymethodbutneedaproofletI=0arctan(2x2)x2+4dx2I=+arctan(2x2)x2+4dxletφ(z)=arctan(2z2)z2+4φ(z)=arctan(z2)(z2i)(z+2i)+φ(z)dz=2iπRes(φ,2i)andRes(φ,2i)=arctan(4)4i=arctan(4)4i+φ(z)dz=2iπ×arctan(4)4i=π2arctan(4).

Commented by mathmax by abdo last updated on 12/Sep/19

⇒I =(π/4)arctan(4).

I=π4arctan(4).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com