Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 68487 by mr W last updated on 11/Sep/19

Commented by mr W last updated on 11/Sep/19

rod AB has length b and mass M,  rope BC has length l and mass m,  the friction between rod and ground  is sufficient, such that point A can  not slide.  l+b>h  find θ=?

rodABhaslengthbandmassM,ropeBChaslengthlandmassm,thefrictionbetweenrodandgroundissufficient,suchthatpointAcannotslide.l+b>hfindθ=?

Commented by mr W last updated on 13/Sep/19

ajfour sir:  can you try to get a single equation  to determine θ?

ajfoursir:canyoutrytogetasingleequationtodetermineθ?

Answered by mr W last updated on 12/Sep/19

Commented by Prithwish sen last updated on 13/Sep/19

excellent sir !

excellentsir!

Commented by mr W last updated on 13/Sep/19

mass of rope of unit length ρ=(m/l)  T_0 =horizontal component of tension  in rope  let a=(T_0 /(ρg))  the rope BC is a part of a catenary  with equation  y=a cosh (x/a) in coordinate system  as shown in the diagram above.  T_B  cos β=T_0 =aρg  T_B b sin (θ+β)=((Mgb cos θ)/2)  ((aρg)/(cos β))sin (θ+β)=((Mg cos θ)/2)  ((am)/(l cos β))sin (θ+β)=((M cos θ)/2)  ((a(sin θ cos β+cos θ sin β))/(cos β cos θ))=((Ml)/(2m))  ⇒tan θ+tan β=((μl)/a) with μ=(M/(2m))  at point B:  k=a cosh (e/a)  y′=tan β=sinh (e/a)  at point C:  f=b cos θ  k+h−b sin θ=a cosh ((e+f)/a)  a cosh (e/a)+h−b sin θ=a cosh ((e+f)/a)  ⇒h−b sin θ=a(cosh ((e+f)/a)−cosh (e/a))  l=a(sinh ((e+f)/a)−sinh (e/a))  ⇒sinh ((e+f)/a)−sinh (e/a)=(l/a)  ⇒tan θ+sinh (e/a)=((μl)/a)  ⇒(e/a)=sinh^(−1)  (((μl)/a)−tan θ)  ⇒sinh ((e+f)/a)=((l(1+μ))/a)−tan θ  ⇒((e+f)/a)=sinh^(−1)  [((l(1+μ))/a)−tan θ]  ⇒(e/a)+(f/a)=sinh^(−1)  [((l(1+μ))/a)−tan θ]  ⇒sinh^(−1)  (((μl)/a)−tan θ)+((b cos θ)/a)=sinh^(−1)  [((l(1+μ))/a)−tan θ]  ⇒sinh^(−1)  [((l(1+μ))/a)−tan θ]−sinh^(−1)  (((μl)/a)−tan θ)=(l/a)×((b cos θ)/l)  ⇒cosh {sinh^(−1)  [((l(1+μ))/a)−tan θ]}−cosh {sinh^(−1)  (((μl)/a)−tan θ)}=(l/a)×((h−b sin θ)/l)  let λ=(l/a)  ⇒sinh^(−1)  [(1+μ)λ−tan θ]−sinh^(−1)  (μλ−tan θ)=((λb cos θ)/l)       ...(i)  ⇒cosh {sinh^(−1)  [(1+μ)λ−tan θ]}−cosh {sinh^(−1)  (μλ−tan θ)}=((λ(h−b sin θ))/l)      ...(ii)  unknowns in (i) and (ii): λ and θ    example:  μ=(M/(2m))=2  l=2  b=3  h=4  ⇒θ=61.617°  (θ=61.045° if rope were massless)

massofropeofunitlengthρ=mlT0=horizontalcomponentoftensioninropeleta=T0ρgtheropeBCisapartofacatenarywithequationy=acoshxaincoordinatesystemasshowninthediagramabove.TBcosβ=T0=aρgTBbsin(θ+β)=Mgbcosθ2aρgcosβsin(θ+β)=Mgcosθ2amlcosβsin(θ+β)=Mcosθ2a(sinθcosβ+cosθsinβ)cosβcosθ=Ml2mtanθ+tanβ=μlawithμ=M2matpointB:k=acosheay=tanβ=sinheaatpointC:f=bcosθk+hbsinθ=acoshe+faacoshea+hbsinθ=acoshe+fahbsinθ=a(coshe+facoshea)l=a(sinhe+fasinhea)sinhe+fasinhea=latanθ+sinhea=μlaea=sinh1(μlatanθ)sinhe+fa=l(1+μ)atanθe+fa=sinh1[l(1+μ)atanθ]ea+fa=sinh1[l(1+μ)atanθ]sinh1(μlatanθ)+bcosθa=sinh1[l(1+μ)atanθ]sinh1[l(1+μ)atanθ]sinh1(μlatanθ)=la×bcosθlcosh{sinh1[l(1+μ)atanθ]}cosh{sinh1(μlatanθ)}=la×hbsinθlletλ=lasinh1[(1+μ)λtanθ]sinh1(μλtanθ)=λbcosθl...(i)cosh{sinh1[(1+μ)λtanθ]}cosh{sinh1(μλtanθ)}=λ(hbsinθ)l...(ii)unknownsin(i)and(ii):λandθexample:μ=M2m=2l=2b=3h=4θ=61.617°(θ=61.045°ifropeweremassless)

Commented by Prithwish sen last updated on 13/Sep/19

but what if BC is a straight line.

butwhatifBCisastraightline.

Commented by mr W last updated on 13/Sep/19

if BC is straight line, i.e. the rope is  massless, then it is a pure geometric  question for a triangle with sides  b, l and h.  sin θ=cos ((π/2)−θ)=((b^2 +h^2 −l^2 )/(2bh))  ⇒θ=sin^(−1) (((b^2 +h^2 −l^2 )/(2bh)))

ifBCisstraightline,i.e.theropeismassless,thenitisapuregeometricquestionforatrianglewithsidesb,landh.sinθ=cos(π2θ)=b2+h2l22bhθ=sin1(b2+h2l22bh)

Commented by Prithwish sen last updated on 13/Sep/19

Thank you sir.

Thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com