Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68600 by Abdo msup. last updated on 14/Sep/19

1)calculatef(a)=  ∫_0 ^∞   ((cos(arctanx))/(a+x^2 ))dx with a>0  2)?calculste  g(a) =∫_0 ^∞  ((cos(arctanx))/((a+x^2 )^2 ))  3)find the value if integrals  ∫_0 ^∞   ((cos(arctanx))/(2+x^2 )) and ∫_0 ^∞   ((cos(arctanx))/((1+x^2 )^2 ))

$$\left.\mathrm{1}\right){calculatef}\left({a}\right)=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{{a}+{x}^{\mathrm{2}} }{dx}\:{with}\:{a}>\mathrm{0} \\ $$ $$\left.\mathrm{2}\right)?{calculste}\:\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({arctanx}\right)}{\left({a}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$ $$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{if}\:{integrals} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{\mathrm{2}+{x}^{\mathrm{2}} }\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctanx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$

Commented bymathmax by abdo last updated on 14/Sep/19

1) we have 2f(a)=∫_(−∞) ^(+∞)  ((cos(arctanx))/(x^2  +a))dx =Re(∫_(−∞) ^(+∞)  (e^(iarctan(x)) /(x^2  +a))dx)  let ϕ(z) =(e^(i arctan(z)) /(z^2 +a)) ⇒ϕ(z) =(e^(iarctan(z)) /((z−i(√a))(z+i(√a)))) residus theorem  give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπRes(ϕ,i(√a))  Res(ϕ,i(√a)) =(e^(iarctan(i(√a))) /(2i(√a))) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(e^(iarctan(iz)) /(2i(√a)))  =(π/(√a)) {cos(arctan(iz))+isin(artan(iz))}  rest to find arctan(iz)  .....be continued....

$$\left.\mathrm{1}\right)\:{we}\:{have}\:\mathrm{2}{f}\left({a}\right)=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({arctanx}\right)}{{x}^{\mathrm{2}} \:+{a}}{dx}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{iarctan}\left({x}\right)} }{{x}^{\mathrm{2}} \:+{a}}{dx}\right) \\ $$ $${let}\:\varphi\left({z}\right)\:=\frac{{e}^{{i}\:{arctan}\left({z}\right)} }{{z}^{\mathrm{2}} +{a}}\:\Rightarrow\varphi\left({z}\right)\:=\frac{{e}^{{iarctan}\left({z}\right)} }{\left({z}−{i}\sqrt{{a}}\right)\left({z}+{i}\sqrt{{a}}\right)}\:{residus}\:{theorem} \\ $$ $${give}\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left(\varphi,{i}\sqrt{{a}}\right) \\ $$ $${Res}\left(\varphi,{i}\sqrt{{a}}\right)\:=\frac{{e}^{{iarctan}\left({i}\sqrt{{a}}\right)} }{\mathrm{2}{i}\sqrt{{a}}}\:\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{{e}^{{iarctan}\left({iz}\right)} }{\mathrm{2}{i}\sqrt{{a}}} \\ $$ $$=\frac{\pi}{\sqrt{{a}}}\:\left\{{cos}\left({arctan}\left({iz}\right)\right)+{isin}\left({artan}\left({iz}\right)\right)\right\} \\ $$ $${rest}\:{to}\:{find}\:{arctan}\left({iz}\right)\:\:.....{be}\:{continued}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com