Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 68624 by TawaTawa last updated on 14/Sep/19

Answered by Rasheed.Sindhi last updated on 14/Sep/19

A Tricky Approach  k=−3((1/(a^2 −a+1))+(1/(b^2 −b+1)))+c    =−3(((a+1)/((a+1)(a^2 −a+1)))+((b+1)/((b+1)(b^2 −b+1))))+c    =−3(((a+1)/(a^3 +1))+((b+1)/(b^3 +1)))+c    =−3(((a+1)/(a^3 +4−3))+((b+1)/(b^3 +4−3)))+c    =−3(((a+1)/(−3))+((b+1)/(−3)))+c     =a+b+c+2     =0+2=2   [a,b,c are cuberoots and their sum should be 0]  Hence k=2

$$\mathbb{A}\:\mathbb{T}\boldsymbol{\mathrm{ricky}}\:\mathbb{A}\boldsymbol{\mathrm{pproach}} \\ $$$$\mathrm{k}=−\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} −\mathrm{a}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} −\mathrm{b}+\mathrm{1}}\right)+\mathrm{c} \\ $$$$\:\:=−\mathrm{3}\left(\frac{\mathrm{a}+\mathrm{1}}{\left(\mathrm{a}+\mathrm{1}\right)\left(\mathrm{a}^{\mathrm{2}} −\mathrm{a}+\mathrm{1}\right)}+\frac{\mathrm{b}+\mathrm{1}}{\left(\mathrm{b}+\mathrm{1}\right)\left(\mathrm{b}^{\mathrm{2}} −\mathrm{b}+\mathrm{1}\right)}\right)+\mathrm{c} \\ $$$$\:\:=−\mathrm{3}\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{a}^{\mathrm{3}} +\mathrm{1}}+\frac{\mathrm{b}+\mathrm{1}}{\mathrm{b}^{\mathrm{3}} +\mathrm{1}}\right)+\mathrm{c} \\ $$$$\:\:=−\mathrm{3}\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{a}^{\mathrm{3}} +\mathrm{4}−\mathrm{3}}+\frac{\mathrm{b}+\mathrm{1}}{\mathrm{b}^{\mathrm{3}} +\mathrm{4}−\mathrm{3}}\right)+\mathrm{c} \\ $$$$\:\:=−\mathrm{3}\left(\frac{\mathrm{a}+\mathrm{1}}{−\mathrm{3}}+\frac{\mathrm{b}+\mathrm{1}}{−\mathrm{3}}\right)+\mathrm{c} \\ $$$$\:\:\:=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{2} \\ $$$$\:\:\:=\mathrm{0}+\mathrm{2}=\mathrm{2} \\ $$$$\:\left[\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\:\mathrm{cuberoots}\:\mathrm{and}\:\mathrm{their}\:\mathrm{sum}\:\mathrm{should}\:\mathrm{be}\:\mathrm{0}\right] \\ $$$$\mathrm{Hence}\:\mathrm{k}=\mathrm{2} \\ $$

Commented by TawaTawa last updated on 17/Sep/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by MJS last updated on 14/Sep/19

the solutions of x^3 =a are  α  (−(1/2)−((√3)/2)i)α  (−(1/2)−((√3)/2)i)α  ⇒  k=−((α^4 −4α−12)/(2(α^3 +1)))−(((√3)α(α^3 +4))/(2(α^3 +1)))i  with α=−(4)^(1/3)  we get k=2

$$\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:{x}^{\mathrm{3}} ={a}\:\mathrm{are} \\ $$$$\alpha \\ $$$$\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right)\alpha \\ $$$$\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right)\alpha \\ $$$$\Rightarrow \\ $$$${k}=−\frac{\alpha^{\mathrm{4}} −\mathrm{4}\alpha−\mathrm{12}}{\mathrm{2}\left(\alpha^{\mathrm{3}} +\mathrm{1}\right)}−\frac{\sqrt{\mathrm{3}}\alpha\left(\alpha^{\mathrm{3}} +\mathrm{4}\right)}{\mathrm{2}\left(\alpha^{\mathrm{3}} +\mathrm{1}\right)}\mathrm{i} \\ $$$$\mathrm{with}\:\alpha=−\sqrt[{\mathrm{3}}]{\mathrm{4}}\:\mathrm{we}\:\mathrm{get}\:{k}=\mathrm{2} \\ $$

Commented by TawaTawa last updated on 14/Sep/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com