Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 68664 by Maclaurin Stickker last updated on 14/Sep/19

In a equilateral triangle ABC whose  side is a, the points M and N are taken  on the side BC, such that the triangles  ABM, AMN and ANC have the same   perimeter. Calculate the distances from  vertex A to points M and N.  (solve in detail.)

$$\mathrm{In}\:\mathrm{a}\:\mathrm{equilateral}\:\mathrm{triangle}\:{ABC}\:\mathrm{whose} \\ $$$$\mathrm{side}\:\mathrm{is}\:\boldsymbol{{a}},\:\mathrm{the}\:\mathrm{points}\:{M}\:\mathrm{and}\:{N}\:\mathrm{are}\:\mathrm{taken} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{side}\:{BC},\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{triangles} \\ $$$${ABM},\:{AMN}\:\mathrm{and}\:{ANC}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\: \\ $$$$\mathrm{perimeter}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{distances}\:\mathrm{from} \\ $$$$\mathrm{vertex}\:{A}\:\mathrm{to}\:\mathrm{points}\:{M}\:\mathrm{and}\:{N}. \\ $$$$\left(\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{detail}}.\right) \\ $$

Answered by mr W last updated on 14/Sep/19

Commented by mr W last updated on 14/Sep/19

let BM=NC=x  ⇒MN=a−2x  AM=AN=(√(a^2 +x^2 −2ax cos 60°))=(√(a^2 +x^2 −ax))  a+x+AM=2AM+MN  a+x=AM+a−2x  ⇒AM=3x  (√(a^2 +x^2 −ax))=3x  a^2 +x^2 −ax=9x^2   8x^2 +ax−a^2 =0  x=((((√(33))−1)a)/(16))≈0.2965a  ⇒AM=AN=3x=((3((√(33))−1)a)/(16))≈0.8796a

$${let}\:{BM}={NC}={x} \\ $$$$\Rightarrow{MN}={a}−\mathrm{2}{x} \\ $$$${AM}={AN}=\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{2}{ax}\:\mathrm{cos}\:\mathrm{60}°}=\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} −{ax}} \\ $$$${a}+{x}+{AM}=\mathrm{2}{AM}+{MN} \\ $$$${a}+{x}={AM}+{a}−\mathrm{2}{x} \\ $$$$\Rightarrow{AM}=\mathrm{3}{x} \\ $$$$\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} −{ax}}=\mathrm{3}{x} \\ $$$${a}^{\mathrm{2}} +{x}^{\mathrm{2}} −{ax}=\mathrm{9}{x}^{\mathrm{2}} \\ $$$$\mathrm{8}{x}^{\mathrm{2}} +{ax}−{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}=\frac{\left(\sqrt{\mathrm{33}}−\mathrm{1}\right){a}}{\mathrm{16}}\approx\mathrm{0}.\mathrm{2965}{a} \\ $$$$\Rightarrow{AM}={AN}=\mathrm{3}{x}=\frac{\mathrm{3}\left(\sqrt{\mathrm{33}}−\mathrm{1}\right){a}}{\mathrm{16}}\approx\mathrm{0}.\mathrm{8796}{a} \\ $$

Commented by Rasheed.Sindhi last updated on 15/Sep/19

Sir, why have you assumed BM=NC?

$$\boldsymbol{\mathrm{Sir}},\:\mathrm{why}\:\mathrm{have}\:\mathrm{you}\:\mathrm{assumed}\:{BM}={NC}? \\ $$

Commented by mr W last updated on 15/Sep/19

the assumption is based on symmetry.  certainly it can also  be proved that  BM must be equal to NC.

$${the}\:{assumption}\:{is}\:{based}\:{on}\:{symmetry}. \\ $$$${certainly}\:{it}\:{can}\:{also}\:\:{be}\:{proved}\:{that} \\ $$$${BM}\:{must}\:{be}\:{equal}\:{to}\:{NC}. \\ $$

Commented by mr W last updated on 15/Sep/19

let BM=x, NC=y≠x  a+x+(√(x^2 +a^2 −ax))=a−x−y+(√(x^2 +a^2 −ax))+(√(y^2 +a^2 −ay))  ⇒(√(y^2 +a^2 −ay))=2x+y  ⇒a^2 −ay=4x^2 +4xy   ...(i)    a+x+(√(x^2 +a^2 −ax))=a+y+(√(y^2 +a^2 −ay))  ⇒x+(√(x^2 +a^2 −ax))=y+(√(y^2 +a^2 −ay))  ⇒x+(√(x^2 +a^2 −ax))=y+2x+y  ⇒(√(x^2 +a^2 −ax))=2y+x  ⇒a^2 −ax=4y^2 +4xy   ...(ii)  (i)−(ii):  a(x−y)=4(x^2 −y^2 )  ⇒a(x−y)=4(x−y)(x+y)  ⇒x−y=0 or a=4(x+y)  ⇒x=y or x+y=(a/4)  but if x+y=(a/4):  (i)+(ii):  2a^2 −a(x+y)=4(x^2 +y^2 +2xy)  2a^2 −a(x+y)=4(x+y)^2   2a^2 −(a^2 /4)=(a^2 /4)  ((3a^2 )/2)=0 !  ⇒x=y is the only possibility!

$${let}\:{BM}={x},\:{NC}={y}\neq{x} \\ $$$${a}+{x}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ax}}={a}−{x}−{y}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ax}}+\sqrt{{y}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ay}} \\ $$$$\Rightarrow\sqrt{{y}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ay}}=\mathrm{2}{x}+{y} \\ $$$$\Rightarrow{a}^{\mathrm{2}} −{ay}=\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{xy}\:\:\:...\left({i}\right) \\ $$$$ \\ $$$${a}+{x}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ax}}={a}+{y}+\sqrt{{y}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ay}} \\ $$$$\Rightarrow{x}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ax}}={y}+\sqrt{{y}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ay}} \\ $$$$\Rightarrow{x}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ax}}={y}+\mathrm{2}{x}+{y} \\ $$$$\Rightarrow\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} −{ax}}=\mathrm{2}{y}+{x} \\ $$$$\Rightarrow{a}^{\mathrm{2}} −{ax}=\mathrm{4}{y}^{\mathrm{2}} +\mathrm{4}{xy}\:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$${a}\left({x}−{y}\right)=\mathrm{4}\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{a}\left({x}−{y}\right)=\mathrm{4}\left({x}−{y}\right)\left({x}+{y}\right) \\ $$$$\Rightarrow{x}−{y}=\mathrm{0}\:{or}\:{a}=\mathrm{4}\left({x}+{y}\right) \\ $$$$\Rightarrow{x}={y}\:{or}\:{x}+{y}=\frac{{a}}{\mathrm{4}} \\ $$$${but}\:{if}\:{x}+{y}=\frac{{a}}{\mathrm{4}}: \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\mathrm{2}{a}^{\mathrm{2}} −{a}\left({x}+{y}\right)=\mathrm{4}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xy}\right) \\ $$$$\mathrm{2}{a}^{\mathrm{2}} −{a}\left({x}+{y}\right)=\mathrm{4}\left({x}+{y}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{a}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}=\frac{{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\frac{\mathrm{3}{a}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{0}\:! \\ $$$$\Rightarrow{x}={y}\:{is}\:{the}\:{only}\:{possibility}! \\ $$

Commented by Rasheed.Sindhi last updated on 15/Sep/19

ThαnX a lot sir. You′re very deep  in geometry also!

$$\mathcal{T}{h}\alpha{n}\mathcal{X}\:{a}\:{lot}\:{sir}.\:{You}'\mathrm{re}\:{very}\:{deep} \\ $$$${in}\:{geometry}\:{also}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com