Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 68673 by mr W last updated on 14/Sep/19

find sin 20°=?

findsin20°=?

Commented by MJS last updated on 15/Sep/19

⇒ we cannot use this to get sin 1°, because  sin 3° =(1/8)(1−(√3))(√(5+(√5)))−(1/(16))(1−(√5))(1+(√3))(√2)  and  sin 3° =3sin 1° −4sin^3  1°  also leads to a super complex Cardano  “solution” which is totally useless  and the trigonometric method gives  x_0 =sin ((1/3)arcsin (sin 3°)) =sin 1°  x_1 =cos ((π/6)+(1/3)arcsin (sin 3°)) =cos 31°  x_2 =−sin ((π/3)+(1/3)arcsin (sin 3°)) =−cos 29°

wecannotusethistogetsin1°,becausesin3°=18(13)5+5116(15)(1+3)2andsin3°=3sin1°4sin31°alsoleadstoasupercomplexCardanosolutionwhichistotallyuselessandthetrigonometricmethodgivesx0=sin(13arcsin(sin3°))=sin1°x1=cos(π6+13arcsin(sin3°))=cos31°x2=sin(π3+13arcsin(sin3°))=cos29°

Commented by Prithwish sen last updated on 15/Sep/19

Thanks Sir.

ThanksSir.

Commented by MJS last updated on 14/Sep/19

we have an exact value for sin 3° =sin (π/(60)) ⇒  we′re able to calculate sin ((nπ)/(60)) ∀ n∈R but we  do not have sin 2° nor sin 1° ⇒ we cannot  calculate any other exact value...

wehaveanexactvalueforsin3°=sinπ60wereabletocalculatesinnπ60nRbutwedonothavesin2°norsin1°wecannotcalculateanyotherexactvalue...

Commented by Maclaurin Stickker last updated on 15/Sep/19

We can calculate sin (1°), but it takes   time and the result is very complex.

Wecancalculatesin(1°),butittakestimeandtheresultisverycomplex.

Commented by mr W last updated on 15/Sep/19

thank you sir!  cardano can be applied only if Δ≥0.  but in this case Δ=(−(1/4))^3 +(((√3)/(16)))^2 =−(1/(256))<0

thankyousir!cardanocanbeappliedonlyifΔ0.butinthiscaseΔ=(14)3+(316)2=1256<0

Commented by Prithwish sen last updated on 15/Sep/19

Sin60^° =3Sin20^° −4Sin^3 20^°   Let Sin20^° =x  ∴ ((√3)/2) = 3x−4x^3   x^3 −(3/4)x+((√3)/8) =0  By Cardano′s method for  x^3 −3px−2q=0  x=^3 (√(q+(√(q^2 −p^3 )))) +^3 (√(q−(√(q^2 −p^3 ))))  we get  p = (1/4)  and q = −((√3)/(16))  x =^3 (√(((−(√3))/(16))+(√((3/(256))−(1/(64)))))) +^3 (√(((−(√3))/(16)) + (√((3/(256)) −(1/(64))))))        =^3 (√((−(√(3+))i)/(16))) +^3 (√((−(√3)−i)/(16)))  Sir,waiting for your valuable comment.

Sin60°=3Sin20°4Sin320°LetSin20°=x32=3x4x3x334x+38=0ByCardanosmethodforx33px2q=0x=3q+q2p3+3qq2p3wegetp=14andq=316x=3316+3256164+3316+3256164=33+i16+33i16Sir,waitingforyourvaluablecomment.

Commented by Prithwish sen last updated on 15/Sep/19

Thank you Sir!

ThankyouSir!

Commented by MJS last updated on 15/Sep/19

using Cardano is possible but (1) we have to  approximate all 3 solutions to find which is  the right one and (2) the written out solution  is not useable. but also the trigonometric  method doesn′t satisfy sometimes  (x−2)(x+3)(x−5)=0  x^3 −4x^2 −11x+30=0  x=t+(4/3)  t^3 −((49)/3)t+((286)/(27))=0  Cardano leads to  u=((−((143)/(27))+((20(√3)i)/3)))^(1/3) ; v=((−((143)/(27))−((20(√3)i)/3)))^(1/3)   x_1 =u+v  x_2 =(−(1/2)−(((√3)i)/2))u+(−(1/2)+(((√3)i)/2))v  x_3 =(−(1/2)+(((√3)i)/2))u+(−(1/2)−(((√3)i)/2))v  and I don′t think it′s possible to handle these  or to analytically show x_1 =5; x_2 =2; x_3 =−3    the trigonometric method gives  x_0 =(4/3)+((14)/3)sin ((1/3)arcsin ((143)/(343)))  x_1 =(4/3)+((14)/3)cos ((π/6)+(1/3)arcsin ((143)/(343)))  x_2 =(4/3)−((14)/3)sin ((π/3)+(1/3)arcsin ((143)/(343)))  again, try to show x_0 =2; x_1 =5; x_2 =−3    as we see, the actual solutions can be well hidden

usingCardanoispossiblebut(1)wehavetoapproximateall3solutionstofindwhichistherightoneand(2)thewrittenoutsolutionisnotuseable.butalsothetrigonometricmethoddoesntsatisfysometimes(x2)(x+3)(x5)=0x34x211x+30=0x=t+43t3493t+28627=0Cardanoleadstou=14327+203i33;v=14327203i33x1=u+vx2=(123i2)u+(12+3i2)vx3=(12+3i2)u+(123i2)vandIdontthinkitspossibletohandletheseortoanalyticallyshowx1=5;x2=2;x3=3thetrigonometricmethodgivesx0=43+143sin(13arcsin143343)x1=43+143cos(π6+13arcsin143343)x2=43143sin(π3+13arcsin143343)again,trytoshowx0=2;x1=5;x2=3aswesee,theactualsolutionscanbewellhidden

Terms of Service

Privacy Policy

Contact: info@tinkutara.com