Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 68675 by Rio Michael last updated on 14/Sep/19

                                         Express in partial fraction                                           f(x) ≡ ((2x^3  + x + 2)/((x^2 +1)(x+1)(x−2))) x ≠ −1,2  Hence or otherwise  show that     ∫_0 ^1 f(x) dx = −(1/(12))[ 13ln 2 + π]

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:{Express}\:{in}\:{partial}\:{fraction}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:{f}\left({x}\right)\:\equiv\:\frac{\mathrm{2}{x}^{\mathrm{3}} \:+\:{x}\:+\:\mathrm{2}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)}\:{x}\:\neq\:−\mathrm{1},\mathrm{2} \\ $$$${Hence}\:{or}\:{otherwise}\:\:{show}\:{that}\:\: \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right)\:{dx}\:=\:−\frac{\mathrm{1}}{\mathrm{12}}\left[\:\mathrm{13}{ln}\:\mathrm{2}\:+\:\pi\right] \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 14/Sep/19

f(x)=((2x^3  +x+2)/((x+1)(x−2)(x^2 +1))) =(a/(x+1))+(b/(x−2)) +((cx+d)/(x^2  +1))  a =lim_(x→−1) (x+1)f(x) =((−1)/((−3)(2))) =(1/6)  b =lim_(x→2) (x−2)f(x) =((16+4)/(3.5)) =((20)/(15)) =(4/3)  lim_(x→+∞) xf(x)=2 =a+b +c ⇒c=2−a−b =2−(1/6)−(4/3)  =((12−1−8)/6) =(1/2) ⇒f(x)=(1/(6(x+1))) +(4/(3(x−2))) +(((1/2)x+d)/(x^2  +1))  f(0)=−1 =(1/6)−(2/3) +(1/2)+d =((1−4+3)/6) +d =d⇒d=−1 ⇒  f(x) =(1/(6(x+1))) +(4/(3(x−2))) +(1/2)((x−2)/(x^(2 ) +1))  ∫_0 ^1  f(x)dx =(1/6)[ln∣x+1∣]_0 ^1  +(4/3)[ln∣x−2∣]_0 ^1   +(1/4)[ln(x^2  +1)]_0 ^1   −[arctanx]_0 ^1  =(1/6)ln(2)−(4/3)ln(2) +(1/4)ln(2)−(π/4)  =((1/6)−(4/3)+(1/4))ln(2)−(π/4) =((2−16+3)/(12))ln(2)−(π/4)  ⇒  ∫_0 ^1 f(x)dx =−((11)/(12))ln(2)−(π/4)

$${f}\left({x}\right)=\frac{\mathrm{2}{x}^{\mathrm{3}} \:+{x}+\mathrm{2}}{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:=\frac{{a}}{{x}+\mathrm{1}}+\frac{{b}}{{x}−\mathrm{2}}\:+\frac{{cx}+{d}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${a}\:={lim}_{{x}\rightarrow−\mathrm{1}} \left({x}+\mathrm{1}\right){f}\left({x}\right)\:=\frac{−\mathrm{1}}{\left(−\mathrm{3}\right)\left(\mathrm{2}\right)}\:=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${b}\:={lim}_{{x}\rightarrow\mathrm{2}} \left({x}−\mathrm{2}\right){f}\left({x}\right)\:=\frac{\mathrm{16}+\mathrm{4}}{\mathrm{3}.\mathrm{5}}\:=\frac{\mathrm{20}}{\mathrm{15}}\:=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${lim}_{{x}\rightarrow+\infty} {xf}\left({x}\right)=\mathrm{2}\:={a}+{b}\:+{c}\:\Rightarrow{c}=\mathrm{2}−{a}−{b}\:=\mathrm{2}−\frac{\mathrm{1}}{\mathrm{6}}−\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$=\frac{\mathrm{12}−\mathrm{1}−\mathrm{8}}{\mathrm{6}}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{6}\left({x}+\mathrm{1}\right)}\:+\frac{\mathrm{4}}{\mathrm{3}\left({x}−\mathrm{2}\right)}\:+\frac{\frac{\mathrm{1}}{\mathrm{2}}{x}+{d}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${f}\left(\mathrm{0}\right)=−\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{6}}−\frac{\mathrm{2}}{\mathrm{3}}\:+\frac{\mathrm{1}}{\mathrm{2}}+{d}\:=\frac{\mathrm{1}−\mathrm{4}+\mathrm{3}}{\mathrm{6}}\:+{d}\:={d}\Rightarrow{d}=−\mathrm{1}\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{6}\left({x}+\mathrm{1}\right)}\:+\frac{\mathrm{4}}{\mathrm{3}\left({x}−\mathrm{2}\right)}\:+\frac{\mathrm{1}}{\mathrm{2}}\frac{{x}−\mathrm{2}}{{x}^{\mathrm{2}\:} +\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){dx}\:=\frac{\mathrm{1}}{\mathrm{6}}\left[{ln}\mid{x}+\mathrm{1}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:+\frac{\mathrm{4}}{\mathrm{3}}\left[{ln}\mid{x}−\mathrm{2}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:+\frac{\mathrm{1}}{\mathrm{4}}\left[{ln}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$−\left[{arctanx}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{6}}{ln}\left(\mathrm{2}\right)−\frac{\mathrm{4}}{\mathrm{3}}{ln}\left(\mathrm{2}\right)\:+\frac{\mathrm{1}}{\mathrm{4}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{4}} \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{6}}−\frac{\mathrm{4}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right){ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{4}}\:=\frac{\mathrm{2}−\mathrm{16}+\mathrm{3}}{\mathrm{12}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{4}}\:\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:=−\frac{\mathrm{11}}{\mathrm{12}}{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{4}} \\ $$

Commented by mathmax by abdo last updated on 14/Sep/19

there is a error in the question!

$${there}\:{is}\:{a}\:{error}\:{in}\:{the}\:{question}! \\ $$

Commented by Rio Michael last updated on 15/Sep/19

anyway thanks alot guys i found my error

$${anyway}\:{thanks}\:{alot}\:{guys}\:{i}\:{found}\:{my}\:{error} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com