Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 68712 by Rio Michael last updated on 15/Sep/19

given that x and y are two numbers other one.   given that  a>0 and b>0  and  a^x  = b^y  = (ab)^(xy)   show that  x + y =0

giventhatxandyaretwonumbersotherone. giventhata>0andb>0 andax=by=(ab)xyshowthatx+y=0

Commented byPrithwish sen last updated on 15/Sep/19

Let a^x =b^y =(ab)^(xy) =k  ∴ a=k^(1/x)   b=k^(1/y)   ab=k^(1/(xy))   ∴k^(1/x) .k^(1/y) =k^(1/(xy)) ⇒(1/x)+(1/y) = (1/(xy))⇒x+y=1  please check

Letax=by=(ab)xy=k a=k1x b=k1y ab=k1xy k1x.k1y=k1xy1x+1y=1xyx+y=1 pleasecheck

Commented byMJS last updated on 15/Sep/19

a^0 +b^0 =(ab)^0  ⇒ x=y=0  is one solution  a^x =b^y  ⇒ y=((ln a)/(ln b))x  a^x =(ab)^(xy)  ⇒ y=((ln a)/(ln a +ln b))  ((ln a)/(ln b))x=((ln a)/(ln a +ln b)) ⇒ x=((ln b)/(ln a +ln b))  ⇒ x+y=1

a0+b0=(ab)0x=y=0 isonesolution ax=byy=lnalnbx ax=(ab)xyy=lnalna+lnb lnalnbx=lnalna+lnbx=lnblna+lnb x+y=1

Commented byPrithwish sen last updated on 15/Sep/19

Thanks Sir.

ThanksSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com