Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 6875 by FilupSmith last updated on 01/Aug/16

For vectors v and u where:  v,u∈R^n   What is the angle between v and u?  (both are from origin)

$$\mathrm{For}\:\mathrm{vectors}\:\boldsymbol{{v}}\:\mathrm{and}\:\boldsymbol{{u}}\:\mathrm{where}: \\ $$$$\boldsymbol{{v}},\boldsymbol{{u}}\in\mathbb{R}^{{n}} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\boldsymbol{{v}}\:\mathrm{and}\:\boldsymbol{{u}}? \\ $$$$\left(\mathrm{both}\:\mathrm{are}\:\mathrm{from}\:\mathrm{origin}\right) \\ $$

Commented by prakash jain last updated on 01/Aug/16

cos θ=((v∙u)/(vu))

$$\mathrm{cos}\:\theta=\frac{\boldsymbol{{v}}\centerdot\boldsymbol{{u}}}{{vu}} \\ $$

Commented by FilupSmith last updated on 01/Aug/16

How can we show this?

$$\mathrm{How}\:\mathrm{can}\:\mathrm{we}\:\mathrm{show}\:\mathrm{this}? \\ $$

Commented by FilupSmith last updated on 01/Aug/16

Is this correct?  c^2 =a^2 +b^2 −2abcosθ  cosθ=((c^2 −a^2 −b^2 )/(−2ab))  c=Distance between v and u  c=∥v−u∥=(√(∥v∥^2 +∥u∥^2 −2v∙u))  proof for this needed  a=∥v∥=(√(v_1 ^2 +...+v_n ^2 ))=(√(Σ_(t=1) ^n v_t ^2 ))  b=∥u∥=(√(u_1 ^2 +...+u_n ^2 ))=(√(Σ_(t=1) ^n u_t ^2 ))    cosθ=−((∥v−u∥^2 −∥v∥^2 −∥u∥^2 )/(2∥v∥∥u∥))  cosθ=−((((√(∥v∥^2 +∥u∥^2 −2v∙u)))^2 −∥v∥^2 −∥u∥^2 )/(2∥v∥∥u∥))  cosθ=−((∥v∥^2 +∥u∥^2 −2v∙u−∥v∥^2 −∥u∥^2 )/(2∥v∥∥u∥))  cosθ=−((−2v∙u)/(2∥v∥∥u∥))  cosθ=((2v∙u)/(∥v∥∥u∥))=((2Σ_(t=1) ^n v_t u_t )/(√((Σ_(t=1) ^n v_t ^2 )(Σ_(t=1) ^n u_t ^2 ))))

$$\mathrm{Is}\:\mathrm{this}\:\mathrm{correct}? \\ $$$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\theta \\ $$$$\mathrm{cos}\theta=\frac{{c}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{−\mathrm{2}{ab}} \\ $$$${c}=\mathrm{Distance}\:\mathrm{between}\:\boldsymbol{{v}}\:\mathrm{and}\:\boldsymbol{{u}} \\ $$$${c}=\parallel\boldsymbol{{v}}−\boldsymbol{{u}}\parallel=\sqrt{\parallel\boldsymbol{{v}}\parallel^{\mathrm{2}} +\parallel\boldsymbol{{u}}\parallel^{\mathrm{2}} −\mathrm{2}\boldsymbol{{v}}\centerdot\boldsymbol{{u}}}\:\:{proof}\:{for}\:{this}\:{needed} \\ $$$${a}=\parallel\boldsymbol{{v}}\parallel=\sqrt{{v}_{\mathrm{1}} ^{\mathrm{2}} +...+{v}_{{n}} ^{\mathrm{2}} }=\sqrt{\underset{{t}=\mathrm{1}} {\overset{{n}} {\sum}}{v}_{{t}} ^{\mathrm{2}} } \\ $$$${b}=\parallel\boldsymbol{{u}}\parallel=\sqrt{{u}_{\mathrm{1}} ^{\mathrm{2}} +...+{u}_{{n}} ^{\mathrm{2}} }=\sqrt{\underset{{t}=\mathrm{1}} {\overset{{n}} {\sum}}{u}_{{t}} ^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{cos}\theta=−\frac{\parallel\boldsymbol{{v}}−\boldsymbol{{u}}\parallel^{\mathrm{2}} −\parallel\boldsymbol{{v}}\parallel^{\mathrm{2}} −\parallel\boldsymbol{{u}}\parallel^{\mathrm{2}} }{\mathrm{2}\parallel\boldsymbol{{v}}\parallel\parallel\boldsymbol{{u}}\parallel} \\ $$$$\mathrm{cos}\theta=−\frac{\left(\sqrt{\parallel\boldsymbol{{v}}\parallel^{\mathrm{2}} +\parallel\boldsymbol{{u}}\parallel^{\mathrm{2}} −\mathrm{2}\boldsymbol{{v}}\centerdot\boldsymbol{{u}}}\right)^{\mathrm{2}} −\parallel\boldsymbol{{v}}\parallel^{\mathrm{2}} −\parallel\boldsymbol{{u}}\parallel^{\mathrm{2}} }{\mathrm{2}\parallel\boldsymbol{{v}}\parallel\parallel\boldsymbol{{u}}\parallel} \\ $$$$\mathrm{cos}\theta=−\frac{\parallel\boldsymbol{{v}}\parallel^{\mathrm{2}} +\parallel\boldsymbol{{u}}\parallel^{\mathrm{2}} −\mathrm{2}\boldsymbol{{v}}\centerdot\boldsymbol{{u}}−\parallel\boldsymbol{{v}}\parallel^{\mathrm{2}} −\parallel\boldsymbol{{u}}\parallel^{\mathrm{2}} }{\mathrm{2}\parallel\boldsymbol{{v}}\parallel\parallel\boldsymbol{{u}}\parallel} \\ $$$$\mathrm{cos}\theta=−\frac{−\mathrm{2}\boldsymbol{{v}}\centerdot\boldsymbol{{u}}}{\mathrm{2}\parallel\boldsymbol{{v}}\parallel\parallel\boldsymbol{{u}}\parallel} \\ $$$$\mathrm{cos}\theta=\frac{\mathrm{2}\boldsymbol{{v}}\centerdot\boldsymbol{{u}}}{\parallel\boldsymbol{{v}}\parallel\parallel\boldsymbol{{u}}\parallel}=\frac{\mathrm{2}\underset{{t}=\mathrm{1}} {\overset{{n}} {\sum}}{v}_{{t}} {u}_{{t}} }{\sqrt{\left(\underset{{t}=\mathrm{1}} {\overset{{n}} {\sum}}{v}_{{t}} ^{\mathrm{2}} \right)\left(\underset{{t}=\mathrm{1}} {\overset{{n}} {\sum}}{u}_{{t}} ^{\mathrm{2}} \right)}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com