Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 68761 by Rasheed.Sindhi last updated on 15/Sep/19

Two arcs having their centers on a  circle are cutting each other at a   single point inside the circle and thus   dividing the circle in four regions.    If the arcs cut each other in a:b & c:d   ratios what is the ratio between four  regions of the circle when the circle  has radius R,the arc divided in a:b   has radius r_1  and the arc divided in  c:d has radius r_2 .

$$\mathrm{Two}\:\boldsymbol{\mathrm{arcs}}\:\mathrm{having}\:\mathrm{their}\:\mathrm{centers}\:\mathrm{on}\:\mathrm{a} \\ $$ $$\boldsymbol{\mathrm{circle}}\:\mathrm{are}\:\mathrm{cutting}\:\mathrm{each}\:\mathrm{other}\:\mathrm{at}\:\mathrm{a}\: \\ $$ $$\mathrm{single}\:\mathrm{point}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{and}\:\mathrm{thus} \\ $$ $$\:\mathrm{dividing}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{in}\:\mathrm{four}\:\mathrm{regions}. \\ $$ $$ \\ $$ $$\mathrm{If}\:\mathrm{the}\:\mathrm{arcs}\:\mathrm{cut}\:\mathrm{each}\:\mathrm{other}\:\mathrm{in}\:\boldsymbol{\mathrm{a}}:\boldsymbol{\mathrm{b}}\:\&\:\boldsymbol{\mathrm{c}}:\boldsymbol{\mathrm{d}}\: \\ $$ $$\mathrm{ratios}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{between}\:\mathrm{four} \\ $$ $$\mathrm{regions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{when}\:\mathrm{the}\:\mathrm{circle} \\ $$ $$\mathrm{has}\:\mathrm{radius}\:\boldsymbol{\mathrm{R}},\mathrm{the}\:\mathrm{arc}\:\mathrm{divided}\:\mathrm{in}\:\mathrm{a}:\mathrm{b} \\ $$ $$\:\mathrm{has}\:\mathrm{radius}\:\boldsymbol{\mathrm{r}}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{divided}\:\mathrm{in} \\ $$ $$\mathrm{c}:\mathrm{d}\:\mathrm{has}\:\mathrm{radius}\:\boldsymbol{\mathrm{r}}_{\mathrm{2}} . \\ $$

Commented byRasheed.Sindhi last updated on 15/Sep/19

Answered by mr W last updated on 18/Sep/19

Commented bymr W last updated on 18/Sep/19

cos ((α+β)/2)=(r_1 /(2R))  ⇒α+β=2 cos^(−1) (r_1 /(2R))  (α/β)=(a/b)  ⇒α=((2a)/(a+b))× cos^(−1) (r_1 /(2R))  ⇒β=((2b)/(a+b))× cos^(−1) (r_1 /(2R))  ⇒γ+δ=2 cos^(−1) (r_2 /(2R))  ⇒γ=((2c)/(c+d))× cos^(−1) (r_2 /(2R))  ⇒δ=((2d)/(c+d))× cos^(−1) (r_2 /(2R))    let A_1 =area of part IEG  ......

$$\mathrm{cos}\:\frac{\alpha+\beta}{\mathrm{2}}=\frac{{r}_{\mathrm{1}} }{\mathrm{2}{R}} \\ $$ $$\Rightarrow\alpha+\beta=\mathrm{2}\:\mathrm{cos}^{−\mathrm{1}} \frac{{r}_{\mathrm{1}} }{\mathrm{2}{R}} \\ $$ $$\frac{\alpha}{\beta}=\frac{{a}}{{b}} \\ $$ $$\Rightarrow\alpha=\frac{\mathrm{2}{a}}{{a}+{b}}×\:\mathrm{cos}^{−\mathrm{1}} \frac{{r}_{\mathrm{1}} }{\mathrm{2}{R}} \\ $$ $$\Rightarrow\beta=\frac{\mathrm{2}{b}}{{a}+{b}}×\:\mathrm{cos}^{−\mathrm{1}} \frac{{r}_{\mathrm{1}} }{\mathrm{2}{R}} \\ $$ $$\Rightarrow\gamma+\delta=\mathrm{2}\:\mathrm{cos}^{−\mathrm{1}} \frac{{r}_{\mathrm{2}} }{\mathrm{2}{R}} \\ $$ $$\Rightarrow\gamma=\frac{\mathrm{2}{c}}{{c}+{d}}×\:\mathrm{cos}^{−\mathrm{1}} \frac{{r}_{\mathrm{2}} }{\mathrm{2}{R}} \\ $$ $$\Rightarrow\delta=\frac{\mathrm{2}{d}}{{c}+{d}}×\:\mathrm{cos}^{−\mathrm{1}} \frac{{r}_{\mathrm{2}} }{\mathrm{2}{R}} \\ $$ $$ \\ $$ $${let}\:{A}_{\mathrm{1}} ={area}\:{of}\:{part}\:{IEG} \\ $$ $$...... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com