Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 68768 by aliesam last updated on 15/Sep/19

((2x−1))^(1/3)  +((x−1))^(1/3)  = 1

$$\sqrt[{\mathrm{3}}]{\mathrm{2}{x}−\mathrm{1}}\:+\sqrt[{\mathrm{3}}]{{x}−\mathrm{1}}\:=\:\mathrm{1} \\ $$

Commented by kaivan.ahmadi last updated on 15/Sep/19

t=x−1⇒x=t+1⇒  ((2t+1))^(1/3) +(t)^(1/3) =1⇒((2t+1))^(1/3) =1−(t)^(1/3) ⇒  2t+1=1−3(t)^(1/3) +3(t^2 )^(1/3) −t⇒3t=3(t)^(1/3) ((t)^(1/3) −1)⇒  (let (t)^(1/3) =0⇒t=0⇒x=1) otherwise  (t^2 )^(1/3) =(t)^(1/3) −1⇒(t^2 )^(1/3) −(t)^(1/3) +1=0  set y=(t)^(1/3) ⇒y^2 −y+1=0⇒  y_(1,2) =((1±(√3)i)/2)   { ((y=((1+(√3)i)/2)⇒t=(((1+(√3)i)/2))^3 ⇒x=(((1+(√3)i)/2))^3 +1)),((y=((1−(√3)i)/2)⇒t=(((1−(√3)i)/2))^3 ⇒x=(((1−(√3)i)/2))^3 +1)) :}

$${t}={x}−\mathrm{1}\Rightarrow{x}={t}+\mathrm{1}\Rightarrow \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{2}{t}+\mathrm{1}}+\sqrt[{\mathrm{3}}]{{t}}=\mathrm{1}\Rightarrow\sqrt[{\mathrm{3}}]{\mathrm{2}{t}+\mathrm{1}}=\mathrm{1}−\sqrt[{\mathrm{3}}]{{t}}\Rightarrow \\ $$$$\mathrm{2}{t}+\mathrm{1}=\mathrm{1}−\mathrm{3}\sqrt[{\mathrm{3}}]{{t}}+\mathrm{3}\sqrt[{\mathrm{3}}]{{t}^{\mathrm{2}} }−{t}\Rightarrow\mathrm{3}{t}=\mathrm{3}\sqrt[{\mathrm{3}}]{{t}}\left(\sqrt[{\mathrm{3}}]{{t}}−\mathrm{1}\right)\Rightarrow \\ $$$$\left({let}\:\sqrt[{\mathrm{3}}]{{t}}=\mathrm{0}\Rightarrow{t}=\mathrm{0}\Rightarrow{x}=\mathrm{1}\right)\:{otherwise} \\ $$$$\sqrt[{\mathrm{3}}]{{t}^{\mathrm{2}} }=\sqrt[{\mathrm{3}}]{{t}}−\mathrm{1}\Rightarrow\sqrt[{\mathrm{3}}]{{t}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{t}}+\mathrm{1}=\mathrm{0} \\ $$$${set}\:{y}=\sqrt[{\mathrm{3}}]{{t}}\Rightarrow{y}^{\mathrm{2}} −{y}+\mathrm{1}=\mathrm{0}\Rightarrow \\ $$$${y}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{1}\pm\sqrt{\mathrm{3}}{i}}{\mathrm{2}} \\ $$$$\begin{cases}{{y}=\frac{\mathrm{1}+\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\Rightarrow{t}=\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\right)^{\mathrm{3}} \Rightarrow{x}=\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\right)^{\mathrm{3}} +\mathrm{1}}\\{{y}=\frac{\mathrm{1}−\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\Rightarrow{t}=\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\right)^{\mathrm{3}} \Rightarrow{x}=\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\right)^{\mathrm{3}} +\mathrm{1}}\end{cases} \\ $$$$ \\ $$

Answered by MJS last updated on 16/Sep/19

obviously x=1 is a solution  a^(1/3) +b^(1/3) =c^(1/3)   a+3a^(1/3) b^(1/3) (a^(1/3) +b^(1/3) )+b=c  a^(1/3) b^(1/3) c^(1/3) =c−a−b  abc=(c−a−b)^3   27(2x−1)(x−1)=(3−3x)^3   (2x−1)(x−1)=(1−x)^3   x^2 (x−1)=0 ⇒ x=1 (x=0 not valid)

$$\mathrm{obviously}\:{x}=\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$$${a}^{\mathrm{1}/\mathrm{3}} +{b}^{\mathrm{1}/\mathrm{3}} ={c}^{\mathrm{1}/\mathrm{3}} \\ $$$${a}+\mathrm{3}{a}^{\mathrm{1}/\mathrm{3}} {b}^{\mathrm{1}/\mathrm{3}} \left({a}^{\mathrm{1}/\mathrm{3}} +{b}^{\mathrm{1}/\mathrm{3}} \right)+{b}={c} \\ $$$${a}^{\mathrm{1}/\mathrm{3}} {b}^{\mathrm{1}/\mathrm{3}} {c}^{\mathrm{1}/\mathrm{3}} ={c}−{a}−{b} \\ $$$${abc}=\left({c}−{a}−{b}\right)^{\mathrm{3}} \\ $$$$\mathrm{27}\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}−\mathrm{1}\right)=\left(\mathrm{3}−\mathrm{3}{x}\right)^{\mathrm{3}} \\ $$$$\left(\mathrm{2}{x}−\mathrm{1}\right)\left({x}−\mathrm{1}\right)=\left(\mathrm{1}−{x}\right)^{\mathrm{3}} \\ $$$${x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{1}\:\left({x}=\mathrm{0}\:\mathrm{not}\:\mathrm{valid}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 16/Sep/19

Sir 4th line : a^(1/3) b^(1/3) c^(1/3) =c−a−b

$$\boldsymbol{\mathrm{Sir}}\:\mathrm{4th}\:\mathrm{line}\::\:{a}^{\mathrm{1}/\mathrm{3}} {b}^{\mathrm{1}/\mathrm{3}} {c}^{\mathrm{1}/\mathrm{3}} ={c}−{a}−{b} \\ $$$$ \\ $$

Commented by MJS last updated on 16/Sep/19

thank you, I corrected it

$$\mathrm{thank}\:\mathrm{you},\:\mathrm{I}\:\mathrm{corrected}\:\mathrm{it} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com