Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 68831 by Maclaurin Stickker last updated on 15/Sep/19

The square ABCD has side equal to 1  and the distance AP  is  (1/8).  Calculate the side of the equilateral  triangle PMN inscribed in the square.

$$\mathrm{The}\:\mathrm{square}\:{ABCD}\:\mathrm{has}\:\mathrm{side}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{distance}\:{AP}\:\:\mathrm{is}\:\:\frac{\mathrm{1}}{\mathrm{8}}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equilateral} \\ $$$$\mathrm{triangle}\:{PMN}\:\mathrm{inscribed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{square}. \\ $$

Commented by Maclaurin Stickker last updated on 15/Sep/19

Commented by ajfour last updated on 16/Sep/19

let AP =(1/8)=a  triangle side s, side of square 1.  scos α=1  DP = scos ((π/6)−α)=1−a  ⇒ ((√3)/2)+((s/2))sin α=1−a  s(√(1−(1/s^2 )))=(7/4)−(√3)  s^2 −1=((7/4)−(√3))^2     s^2 =((49)/(16))+3−((7(√3))/2)+1   s=((√(113−56(√3)))/4) .

$${let}\:{AP}\:=\frac{\mathrm{1}}{\mathrm{8}}={a} \\ $$$${triangle}\:{side}\:{s},\:{side}\:{of}\:{square}\:\mathrm{1}. \\ $$$${s}\mathrm{cos}\:\alpha=\mathrm{1} \\ $$$${DP}\:=\:{s}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{6}}−\alpha\right)=\mathrm{1}−{a} \\ $$$$\Rightarrow\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\left(\frac{{s}}{\mathrm{2}}\right)\mathrm{sin}\:\alpha=\mathrm{1}−{a} \\ $$$${s}\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{s}^{\mathrm{2}} }}=\frac{\mathrm{7}}{\mathrm{4}}−\sqrt{\mathrm{3}} \\ $$$${s}^{\mathrm{2}} −\mathrm{1}=\left(\frac{\mathrm{7}}{\mathrm{4}}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\:\:{s}^{\mathrm{2}} =\frac{\mathrm{49}}{\mathrm{16}}+\mathrm{3}−\frac{\mathrm{7}\sqrt{\mathrm{3}}}{\mathrm{2}}+\mathrm{1} \\ $$$$\:{s}=\frac{\sqrt{\mathrm{113}−\mathrm{56}\sqrt{\mathrm{3}}}}{\mathrm{4}}\:. \\ $$

Commented by Maclaurin Stickker last updated on 16/Sep/19

Wow. I loved how you used trigonometry.

$${Wow}.\:{I}\:{loved}\:{how}\:{you}\:{used}\:{trigonometry}. \\ $$

Answered by MJS last updated on 16/Sep/19

P= ((0),((1/8)) )  M= ((1),(y) )  N= ((x),(1) )  ∣PM∣^2 =∣PN∣^2 =∣MN∣^2   y^2 −(1/4)y+((65)/(64))=x^2 +((49)/(64))=x^2 +y^2 −2x−2y+2    y^2 −(1/4)y+((65)/(64))=x^2 +y^2 −2x−2y+2  ⇒ y=(4/7)x^2 −(8/7)x+(9/(16))    y^2 −(1/4)y+((65)/(64))=x^2 +((49)/(64))  ⇒  x^4 −4x^3 +((79)/(32))x^2 −((49)/(16))x+((5341)/(4096))=0  (x^2 +((49)/(64)))(x^2 −4x+((109)/(64)))=0  x∈[0; 1] ⇒ x=2−((7(√3))/8) ⇒ y=((15)/8)−(√3)  ⇒ side s=((√(113−56(√3)))/4)

$${P}=\begin{pmatrix}{\mathrm{0}}\\{\frac{\mathrm{1}}{\mathrm{8}}}\end{pmatrix}\:\:{M}=\begin{pmatrix}{\mathrm{1}}\\{{y}}\end{pmatrix}\:\:{N}=\begin{pmatrix}{{x}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\mid{PM}\mid^{\mathrm{2}} =\mid{PN}\mid^{\mathrm{2}} =\mid{MN}\mid^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}{y}+\frac{\mathrm{65}}{\mathrm{64}}={x}^{\mathrm{2}} +\frac{\mathrm{49}}{\mathrm{64}}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{2}{y}+\mathrm{2} \\ $$$$ \\ $$$${y}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}{y}+\frac{\mathrm{65}}{\mathrm{64}}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{2}{y}+\mathrm{2} \\ $$$$\Rightarrow\:{y}=\frac{\mathrm{4}}{\mathrm{7}}{x}^{\mathrm{2}} −\frac{\mathrm{8}}{\mathrm{7}}{x}+\frac{\mathrm{9}}{\mathrm{16}} \\ $$$$ \\ $$$${y}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}{y}+\frac{\mathrm{65}}{\mathrm{64}}={x}^{\mathrm{2}} +\frac{\mathrm{49}}{\mathrm{64}} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{3}} +\frac{\mathrm{79}}{\mathrm{32}}{x}^{\mathrm{2}} −\frac{\mathrm{49}}{\mathrm{16}}{x}+\frac{\mathrm{5341}}{\mathrm{4096}}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} +\frac{\mathrm{49}}{\mathrm{64}}\right)\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\frac{\mathrm{109}}{\mathrm{64}}\right)=\mathrm{0} \\ $$$${x}\in\left[\mathrm{0};\:\mathrm{1}\right]\:\Rightarrow\:{x}=\mathrm{2}−\frac{\mathrm{7}\sqrt{\mathrm{3}}}{\mathrm{8}}\:\Rightarrow\:{y}=\frac{\mathrm{15}}{\mathrm{8}}−\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{side}\:{s}=\frac{\sqrt{\mathrm{113}−\mathrm{56}\sqrt{\mathrm{3}}}}{\mathrm{4}} \\ $$

Commented by Maclaurin Stickker last updated on 16/Sep/19

Your answer is correct.

$${Your}\:{answer}\:{is}\:{correct}. \\ $$

Commented by Maclaurin Stickker last updated on 16/Sep/19

How did you do that third equation?

$${How}\:{did}\:{you}\:{do}\:{that}\:{third}\:{equation}? \\ $$

Commented by Maclaurin Stickker last updated on 16/Sep/19

Thank you!

$${Thank}\:{you}!\: \\ $$

Commented by MJS last updated on 16/Sep/19

x^4 −4x^3 +((79)/(32))x^2 −((49)/(16))x+((5341)/(4096))=0  x=t+1  t^4 −((113)/(32))t^2 −((49)/8)t−((9379)/(4096))=0  (t^2 −αt−β)(t^2 +αt−γ)=0  ⇒  α^2 +β+γ−((113)/(32))=0∧αβ−αγ−((49)/8)=0∧βγ+((9379)/(4096))=0  ⇒  α=2∧β=((83)/(64))∧γ=−((113)/(64))  (t^2 −2t−((83)/(64)))(t^2 +2t+((113)/(64)))=0  t=x−1  (x^2 −4x+((109)/(64)))(x^2 +((49)/(64)))=0

$${x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{3}} +\frac{\mathrm{79}}{\mathrm{32}}{x}^{\mathrm{2}} −\frac{\mathrm{49}}{\mathrm{16}}{x}+\frac{\mathrm{5341}}{\mathrm{4096}}=\mathrm{0} \\ $$$${x}={t}+\mathrm{1} \\ $$$${t}^{\mathrm{4}} −\frac{\mathrm{113}}{\mathrm{32}}{t}^{\mathrm{2}} −\frac{\mathrm{49}}{\mathrm{8}}{t}−\frac{\mathrm{9379}}{\mathrm{4096}}=\mathrm{0} \\ $$$$\left({t}^{\mathrm{2}} −\alpha{t}−\beta\right)\left({t}^{\mathrm{2}} +\alpha{t}−\gamma\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\alpha^{\mathrm{2}} +\beta+\gamma−\frac{\mathrm{113}}{\mathrm{32}}=\mathrm{0}\wedge\alpha\beta−\alpha\gamma−\frac{\mathrm{49}}{\mathrm{8}}=\mathrm{0}\wedge\beta\gamma+\frac{\mathrm{9379}}{\mathrm{4096}}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\alpha=\mathrm{2}\wedge\beta=\frac{\mathrm{83}}{\mathrm{64}}\wedge\gamma=−\frac{\mathrm{113}}{\mathrm{64}} \\ $$$$\left({t}^{\mathrm{2}} −\mathrm{2}{t}−\frac{\mathrm{83}}{\mathrm{64}}\right)\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\frac{\mathrm{113}}{\mathrm{64}}\right)=\mathrm{0} \\ $$$${t}={x}−\mathrm{1} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\frac{\mathrm{109}}{\mathrm{64}}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{49}}{\mathrm{64}}\right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com