Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 68835 by MJS last updated on 16/Sep/19

reposting this because it′s not yet solved  correctly. I criticize that most of you people  do not test if your solutions fit the given  equations in many cases    x^2 +1−(√(x^3 +x))=6x    please determine  (1) how many real solutions  (2) how many complex solutions  we can expect  (3) solve it  (4) test your solutions

$$\mathrm{reposting}\:\mathrm{this}\:\mathrm{because}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{yet}\:\mathrm{solved} \\ $$$$\mathrm{correctly}.\:\mathrm{I}\:\mathrm{criticize}\:\mathrm{that}\:\mathrm{most}\:\mathrm{of}\:\mathrm{you}\:\mathrm{people} \\ $$$$\mathrm{do}\:\mathrm{not}\:\mathrm{test}\:\mathrm{if}\:\mathrm{your}\:\mathrm{solutions}\:\mathrm{fit}\:\mathrm{the}\:\mathrm{given} \\ $$$$\mathrm{equations}\:\mathrm{in}\:\mathrm{many}\:\mathrm{cases} \\ $$$$ \\ $$$${x}^{\mathrm{2}} +\mathrm{1}−\sqrt{{x}^{\mathrm{3}} +{x}}=\mathrm{6}{x} \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{determine} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{how}\:\mathrm{many}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{how}\:\mathrm{many}\:\mathrm{complex}\:\mathrm{solutions} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{expect} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{solve}\:\mathrm{it} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{test}\:\mathrm{your}\:\mathrm{solutions} \\ $$

Commented by Prithwish sen last updated on 16/Sep/19

x^2 −6x+1=(√(x^3 +x))  Squaring both sides we get  x^4 −13x^3 +38x^2 −13x+1=0  and this is the reciprocal equation of 1^(st)  type   ∴ (x^4 +1)−13x(x^2 +1)+38x^2 =0  Dividing the equation by x^2  we get  (x^2 +(1/x^2 ))−13(x+(1/x))+38 =0  (x+(1/x))^2 −13(x+(1/x))+36=0  putting x+(1/x) = y we get  y^2 −13y+36 =0  (y−4)(y−9)=0   and i.e  x^2 −4x+1= 0  and  x^2 −9x +1= 0  Solving we get     x = 2± (√3)  , ((9±(√(77)))/2)    now 2−(√3) and 2+(√3) are reciprocal  on the other hand ((9+(√(77)))/2)  and ((9−(√(77)))/2) are reciprocal.  now 2+(√(3 ))∽ 3.73  and 2−(√3) ∽ 0.268  ((9−(√(77)))/2) ∽ 0.11  and ((9+(√(77)))/2) ∽ 8.89  the equation satisfies only on 0.11 and 8.89  MJS Sir, please share your valuable comments.

$$\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{1}=\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{x}} \\ $$$$\mathrm{Squaring}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{we}\:\mathrm{get} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\mathrm{13}\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{38}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{13}\boldsymbol{\mathrm{x}}+\mathrm{1}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{reciprocal}}\:\boldsymbol{\mathrm{equation}}\:\boldsymbol{\mathrm{of}}\:\mathrm{1}^{\boldsymbol{\mathrm{st}}} \:\boldsymbol{\mathrm{type}} \\ $$$$\:\therefore\:\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)−\mathrm{13x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{38x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{Dividing}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{by}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{we}\:\mathrm{get} \\ $$$$\left(\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)−\mathrm{13}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{38}\:=\mathrm{0} \\ $$$$\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} −\mathrm{13}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{36}=\mathrm{0} \\ $$$$\mathrm{putting}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\:=\:\boldsymbol{\mathrm{y}}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{y}^{\mathrm{2}} −\mathrm{13y}+\mathrm{36}\:=\mathrm{0} \\ $$$$\left(\mathrm{y}−\mathrm{4}\right)\left(\mathrm{y}−\mathrm{9}\right)=\mathrm{0}\:\:\:\mathrm{and}\:\mathrm{i}.\mathrm{e} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{1}=\:\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{2}} −\mathrm{9x}\:+\mathrm{1}=\:\mathrm{0} \\ $$$$\mathrm{Solving}\:\mathrm{we}\:\mathrm{get}\: \\ $$$$\:\:\boldsymbol{\mathrm{x}}\:=\:\mathrm{2}\pm\:\sqrt{\mathrm{3}}\:\:,\:\frac{\mathrm{9}\pm\sqrt{\mathrm{77}}}{\mathrm{2}}\:\: \\ $$$$\boldsymbol{\mathrm{now}}\:\mathrm{2}−\sqrt{\mathrm{3}}\:\boldsymbol{\mathrm{and}}\:\mathrm{2}+\sqrt{\mathrm{3}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{reciprocal}} \\ $$$$\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{other}}\:\boldsymbol{\mathrm{hand}}\:\frac{\mathrm{9}+\sqrt{\mathrm{77}}}{\mathrm{2}}\:\:\boldsymbol{\mathrm{and}}\:\frac{\mathrm{9}−\sqrt{\mathrm{77}}}{\mathrm{2}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{reciprocal}}. \\ $$$$\boldsymbol{\mathrm{now}}\:\mathrm{2}+\sqrt{\mathrm{3}\:}\backsim\:\mathrm{3}.\mathrm{73}\:\:\boldsymbol{\mathrm{and}}\:\mathrm{2}−\sqrt{\mathrm{3}}\:\backsim\:\mathrm{0}.\mathrm{268} \\ $$$$\frac{\mathrm{9}−\sqrt{\mathrm{77}}}{\mathrm{2}}\:\backsim\:\mathrm{0}.\mathrm{11}\:\:\boldsymbol{\mathrm{and}}\:\frac{\mathrm{9}+\sqrt{\mathrm{77}}}{\mathrm{2}}\:\backsim\:\mathrm{8}.\mathrm{89} \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}\:\boldsymbol{\mathrm{satisfies}}\:\boldsymbol{\mathrm{only}}\:\boldsymbol{\mathrm{on}}\:\mathrm{0}.\mathrm{11}\:\boldsymbol{\mathrm{and}}\:\mathrm{8}.\mathrm{89} \\ $$$$\boldsymbol{\mathrm{MJS}}\:\boldsymbol{\mathrm{Sir}},\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{share}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{valuable}}\:\boldsymbol{\mathrm{comments}}. \\ $$

Commented by MJS last updated on 16/Sep/19

good, thank you! we have to test, because  with squaring we get false solutions

$$\mathrm{good},\:\mathrm{thank}\:\mathrm{you}!\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{test},\:\mathrm{because} \\ $$$$\mathrm{with}\:\mathrm{squaring}\:\mathrm{we}\:\mathrm{get}\:\mathrm{false}\:\mathrm{solutions} \\ $$

Commented by Prithwish sen last updated on 16/Sep/19

Thank you sir.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by Rasheed.Sindhi last updated on 16/Sep/19

Slightly different(?) way  x^2 +1−(√(x^3 +x))=6x  x(x+(1/x))−x(√(x+(1/x)))−6x=0  x{(x+(1/x))−(√(x+(1/x)))−6}=0  x=0 (Not valid) ∣ (x+(1/x))−(√(x+(1/x)))−6=0  Let (√(x+(1/x)))=y  y^2 −y−6=0  (y−3)(y+2)=0  y=3  ∣   y=−2  (√(x+(1/x)))=3  ∣  (√(x+(1/x)))=−2 (false)  x+(1/x)=9  x^2 −9x+1=0  x=((9±(√(81−4)))/2)=((9±(√(77)))/2)  Substituting in original equation we  can see that these both are valid.

$$\mathrm{Slightly}\:\mathrm{different}\left(?\right)\:\mathrm{way} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{1}−\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{x}}=\mathrm{6x} \\ $$$$\mathrm{x}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)−\mathrm{x}\sqrt{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}}−\mathrm{6x}=\mathrm{0} \\ $$$$\mathrm{x}\left\{\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)−\sqrt{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}}−\mathrm{6}\right\}=\mathrm{0} \\ $$$$\mathrm{x}=\mathrm{0}\:\left(\mathrm{Not}\:\mathrm{valid}\right)\:\mid\:\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)−\sqrt{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}}−\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{Let}\:\sqrt{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}}=\mathrm{y} \\ $$$$\mathrm{y}^{\mathrm{2}} −\mathrm{y}−\mathrm{6}=\mathrm{0} \\ $$$$\left(\mathrm{y}−\mathrm{3}\right)\left(\mathrm{y}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{y}=\mathrm{3}\:\:\mid\:\:\:\mathrm{y}=−\mathrm{2} \\ $$$$\sqrt{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}}=\mathrm{3}\:\:\mid\:\:\sqrt{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}}=−\mathrm{2}\:\left(\mathrm{false}\right) \\ $$$$\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{9} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{9x}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{x}=\frac{\mathrm{9}\pm\sqrt{\mathrm{81}−\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{9}\pm\sqrt{\mathrm{77}}}{\mathrm{2}} \\ $$$$\mathrm{Substituting}\:\mathrm{in}\:\mathrm{original}\:\mathrm{equation}\:\mathrm{we} \\ $$$$\mathrm{can}\:\mathrm{see}\:\mathrm{that}\:\mathrm{these}\:\mathrm{both}\:\mathrm{are}\:\mathrm{valid}. \\ $$

Answered by ajfour last updated on 16/Sep/19

(x^2 +1−6x)^2 =x^3 +x  dividing by x^2   (x+(1/x)−6)^2 =x+(1/x)  if we let  x+(1/x)=t     t^2 −13t+36=0     t=((13)/2)±(√(((169)/4)−36))     t=((13)/2)±(5/2)   ⇒   x+(1/x)=4, 9       x^2 −4x+1=0  ⇒         x=2±(√(4−1)) = 2±(√3)  >0  and from  x^2 −9x+1=0       x=(9/2)±(√(((81)/4)−1))         =(9/2)±((√(77))/2)    >0  x^3 −4x^2 +x=0   ⇒ x^3 +x=4x^2   or  x^3 −9x^2 +x=0 ⇒ x^3 +x=9x^2   testing       x^2 +1−6x=4∣x∣   and as all    found roots are >0  ⇒ x^2 −10x+1=0  ⇒  x=5±(√(25−1)) = 5±2(√6)      ⇒  x=2±(√3)  cannot be true      solutions.     x^2 +1−6x=3∣x∣   gives for x>0     x^2 −9x+1=0  (same eq.)  ⇒so x=((9±(√(77)))/2) are true solutions.

$$\left({x}^{\mathrm{2}} +\mathrm{1}−\mathrm{6}{x}\right)^{\mathrm{2}} ={x}^{\mathrm{3}} +{x} \\ $$$${dividing}\:{by}\:{x}^{\mathrm{2}} \\ $$$$\left({x}+\frac{\mathrm{1}}{{x}}−\mathrm{6}\right)^{\mathrm{2}} ={x}+\frac{\mathrm{1}}{{x}} \\ $$$${if}\:{we}\:{let}\:\:{x}+\frac{\mathrm{1}}{{x}}={t} \\ $$$$\:\:\:{t}^{\mathrm{2}} −\mathrm{13}{t}+\mathrm{36}=\mathrm{0} \\ $$$$\:\:\:{t}=\frac{\mathrm{13}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{169}}{\mathrm{4}}−\mathrm{36}} \\ $$$$\:\:\:{t}=\frac{\mathrm{13}}{\mathrm{2}}\pm\frac{\mathrm{5}}{\mathrm{2}}\: \\ $$$$\Rightarrow\:\:\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{4},\:\mathrm{9} \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}=\mathrm{0}\:\:\Rightarrow\:\: \\ $$$$\:\:\:\:\:{x}=\mathrm{2}\pm\sqrt{\mathrm{4}−\mathrm{1}}\:=\:\mathrm{2}\pm\sqrt{\mathrm{3}}\:\:>\mathrm{0} \\ $$$${and}\:{from}\:\:{x}^{\mathrm{2}} −\mathrm{9}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:{x}=\frac{\mathrm{9}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{81}}{\mathrm{4}}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{9}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{77}}}{\mathrm{2}}\:\:\:\:>\mathrm{0} \\ $$$${x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +{x}=\mathrm{0}\:\:\:\Rightarrow\:{x}^{\mathrm{3}} +{x}=\mathrm{4}{x}^{\mathrm{2}} \\ $$$${or}\:\:{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} +{x}=\mathrm{0}\:\Rightarrow\:{x}^{\mathrm{3}} +{x}=\mathrm{9}{x}^{\mathrm{2}} \\ $$$${testing} \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{6}{x}=\mathrm{4}\mid{x}\mid\:\:\:{and}\:{as}\:{all} \\ $$$$\:\:{found}\:{roots}\:{are}\:>\mathrm{0} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:\:{x}=\mathrm{5}\pm\sqrt{\mathrm{25}−\mathrm{1}}\:=\:\mathrm{5}\pm\mathrm{2}\sqrt{\mathrm{6}} \\ $$$$\:\:\:\:\Rightarrow\:\:{x}=\mathrm{2}\pm\sqrt{\mathrm{3}}\:\:{cannot}\:{be}\:{true} \\ $$$$\:\:\:\:{solutions}. \\ $$$$\:\:\:{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{6}{x}=\mathrm{3}\mid{x}\mid\:\:\:{gives}\:{for}\:{x}>\mathrm{0} \\ $$$$\:\:\:{x}^{\mathrm{2}} −\mathrm{9}{x}+\mathrm{1}=\mathrm{0}\:\:\left({same}\:{eq}.\right) \\ $$$$\Rightarrow{so}\:{x}=\frac{\mathrm{9}\pm\sqrt{\mathrm{77}}}{\mathrm{2}}\:{are}\:{true}\:{solutions}. \\ $$

Commented by MJS last updated on 16/Sep/19

good, thank you!

$$\mathrm{good},\:\mathrm{thank}\:\mathrm{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com