Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68879 by mathmax by abdo last updated on 16/Sep/19

let I =∫_0 ^1   (x/(ln(1+x)))dx  determine a approximate value of I

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{ln}\left(\mathrm{1}+{x}\right)}{dx}\:\:{determine}\:{a}\:{approximate}\:{value}\:{of}\:{I} \\ $$

Commented by Abdo msup. last updated on 21/Sep/19

there a error of calculus in the answer i will hid  this post ...

$${there}\:{a}\:{error}\:{of}\:{calculus}\:{in}\:{the}\:{answer}\:{i}\:{will}\:{hid} \\ $$$${this}\:{post}\:... \\ $$

Commented by mathmax by abdo last updated on 22/Sep/19

we have ln^′ (1+x) =(1/(1+x)) =Σ_(n=0) ^∞  (−1)^n x^n  ⇒  ln(1+x) =Σ_(n=0) ^∞ (((−1)^n x^(n+1) )/(n+1)) +c  (c=0) ⇒  ln(1+x) =x−(x^2 /2) +(x^3 /3) −... ⇒x−(x^2 /2) ≤ln(1+x) ≤x ⇒  (1/x) ≤(1/(ln(1+x))) ≤(1/(x−(x^2 /2))) ⇒ 1 ≤ (x/(ln(1+x))) ≤(1/(1−(x/2))) ⇒  1≤ ∫_0 ^1   (x/(ln(1+x)))dx ≤∫_0 ^1   (dx/(1−(x/2)))  we have  ∫_0 ^1   (dx/(1−(x/2))) =∫_0 ^1   ((2dx)/(2−x)) =−2 ∫_0 ^1  (dx/(x−2)) =−2[ln∣x−2∣]_0 ^1 =−2(−ln2)  =2ln(2) ⇒ 1 ≤I ≤2ln(2)  so v_0 =((1+2ln(2))/2)  is a approximate  value of I .

$${we}\:{have}\:{ln}^{'} \left(\mathrm{1}+{x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} {x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:+{c}\:\:\left({c}=\mathrm{0}\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{x}\right)\:={x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:−...\:\Rightarrow{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{ln}\left(\mathrm{1}+{x}\right)\:\leqslant{x}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{x}}\:\leqslant\frac{\mathrm{1}}{{ln}\left(\mathrm{1}+{x}\right)}\:\leqslant\frac{\mathrm{1}}{{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}\:\Rightarrow\:\mathrm{1}\:\leqslant\:\frac{{x}}{{ln}\left(\mathrm{1}+{x}\right)}\:\leqslant\frac{\mathrm{1}}{\mathrm{1}−\frac{{x}}{\mathrm{2}}}\:\Rightarrow \\ $$$$\mathrm{1}\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{ln}\left(\mathrm{1}+{x}\right)}{dx}\:\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\mathrm{1}−\frac{{x}}{\mathrm{2}}}\:\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\mathrm{1}−\frac{{x}}{\mathrm{2}}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{dx}}{\mathrm{2}−{x}}\:=−\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{{x}−\mathrm{2}}\:=−\mathrm{2}\left[{ln}\mid{x}−\mathrm{2}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} =−\mathrm{2}\left(−{ln}\mathrm{2}\right) \\ $$$$=\mathrm{2}{ln}\left(\mathrm{2}\right)\:\Rightarrow\:\mathrm{1}\:\leqslant{I}\:\leqslant\mathrm{2}{ln}\left(\mathrm{2}\right)\:\:{so}\:{v}_{\mathrm{0}} =\frac{\mathrm{1}+\mathrm{2}{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\:\:{is}\:{a}\:{approximate} \\ $$$${value}\:{of}\:{I}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com