Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 68898 by Rio Michael last updated on 16/Sep/19

solve for x the equation    log_x e^(2x)  = eln x −e

$${solve}\:{for}\:{x}\:{the}\:{equation} \\ $$$$\:\:{log}_{{x}} {e}^{\mathrm{2}{x}} \:=\:{eln}\:{x}\:−{e} \\ $$

Commented by kaivan.ahmadi last updated on 16/Sep/19

((2x)/(lnx))=elnx−e⇒e(lnx)^2 −elnx−2x=0  set y=lnx⇒x=e^y   ⇒ey^2 −ey−2e^y =0⇒y^2 −y=2e^(y−1)

$$\frac{\mathrm{2}{x}}{{lnx}}={elnx}−{e}\Rightarrow{e}\left({lnx}\right)^{\mathrm{2}} −{elnx}−\mathrm{2}{x}=\mathrm{0} \\ $$$${set}\:{y}={lnx}\Rightarrow{x}={e}^{{y}} \\ $$$$\Rightarrow{ey}^{\mathrm{2}} −{ey}−\mathrm{2}{e}^{{y}} =\mathrm{0}\Rightarrow{y}^{\mathrm{2}} −{y}=\mathrm{2}{e}^{{y}−\mathrm{1}} \\ $$

Commented by kaivan.ahmadi last updated on 16/Sep/19

maybe,we can find the answers by drow  y^2 −y and 2e^(y−1) .

$${maybe},{we}\:{can}\:{find}\:{the}\:{answers}\:{by}\:{drow} \\ $$$${y}^{\mathrm{2}} −{y}\:{and}\:\mathrm{2}{e}^{{y}−\mathrm{1}} . \\ $$

Commented by Rio Michael last updated on 17/Sep/19

really that will be uneasy..thanks anyway

$${really}\:{that}\:{will}\:{be}\:{uneasy}..{thanks}\:{anyway} \\ $$

Commented by MJS last updated on 17/Sep/19

we can only approximate  eln x (ln x −1)−2x=0  ⇒  x≈.690331

$$\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\ $$$$\mathrm{eln}\:{x}\:\left(\mathrm{ln}\:{x}\:−\mathrm{1}\right)−\mathrm{2}{x}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}\approx.\mathrm{690331} \\ $$

Commented by Rio Michael last updated on 17/Sep/19

thanks so much, but how did you get that approximate   value, i mean the steps to obtain such approximate

$${thanks}\:{so}\:{much},\:{but}\:{how}\:{did}\:{you}\:{get}\:{that}\:{approximate}\: \\ $$$${value},\:{i}\:{mean}\:{the}\:{steps}\:{to}\:{obtain}\:{such}\:{approximate} \\ $$

Commented by MJS last updated on 18/Sep/19

first, plot it as a function  y=eln x (ln x −1)−2x  or calculate some values  we know x>0 (because ln x is not defined  for x≤0)  put x=(1/e) ⇒ ln x =−1 ⇒ y=2e−(2/e)>0  put x=1 ⇒ ln x =0 ⇒ y=−2<0  ⇒ (1/e)≈.367879<x<1  now try x={.4, .5, .6, .7, .8, .9}  x=.6 ⇒ y=.897...  x=.7 ⇒ y=−.0846...  ⇒ .6<x<.7 but it′s closer to .7  ⇒ try x={.69, .68, .67, ..., .61}  ⇒ .69<x<.70 but it′s closer to .69  ⇒ try x={.691, .692, ..., .699}  x=.691 ⇒ y=−.00592...  ⇒ try x={.6901, .6902, ...

$$\mathrm{first},\:\mathrm{plot}\:\mathrm{it}\:\mathrm{as}\:\mathrm{a}\:\mathrm{function} \\ $$$${y}=\mathrm{eln}\:{x}\:\left(\mathrm{ln}\:{x}\:−\mathrm{1}\right)−\mathrm{2}{x} \\ $$$$\mathrm{or}\:\mathrm{calculate}\:\mathrm{some}\:\mathrm{values} \\ $$$$\mathrm{we}\:\mathrm{know}\:{x}>\mathrm{0}\:\left(\mathrm{because}\:\mathrm{ln}\:{x}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\right. \\ $$$$\left.\mathrm{for}\:{x}\leqslant\mathrm{0}\right) \\ $$$$\mathrm{put}\:{x}=\frac{\mathrm{1}}{\mathrm{e}}\:\Rightarrow\:\mathrm{ln}\:{x}\:=−\mathrm{1}\:\Rightarrow\:{y}=\mathrm{2e}−\frac{\mathrm{2}}{\mathrm{e}}>\mathrm{0} \\ $$$$\mathrm{put}\:{x}=\mathrm{1}\:\Rightarrow\:\mathrm{ln}\:{x}\:=\mathrm{0}\:\Rightarrow\:{y}=−\mathrm{2}<\mathrm{0} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{e}}\approx.\mathrm{367879}<{x}<\mathrm{1} \\ $$$$\mathrm{now}\:\mathrm{try}\:{x}=\left\{.\mathrm{4},\:.\mathrm{5},\:.\mathrm{6},\:.\mathrm{7},\:.\mathrm{8},\:.\mathrm{9}\right\} \\ $$$${x}=.\mathrm{6}\:\Rightarrow\:{y}=.\mathrm{897}... \\ $$$${x}=.\mathrm{7}\:\Rightarrow\:{y}=−.\mathrm{0846}... \\ $$$$\Rightarrow\:.\mathrm{6}<{x}<.\mathrm{7}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{closer}\:\mathrm{to}\:.\mathrm{7} \\ $$$$\Rightarrow\:\mathrm{try}\:{x}=\left\{.\mathrm{69},\:.\mathrm{68},\:.\mathrm{67},\:...,\:.\mathrm{61}\right\} \\ $$$$\Rightarrow\:.\mathrm{69}<{x}<.\mathrm{70}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{closer}\:\mathrm{to}\:.\mathrm{69} \\ $$$$\Rightarrow\:\mathrm{try}\:{x}=\left\{.\mathrm{691},\:.\mathrm{692},\:...,\:.\mathrm{699}\right\} \\ $$$${x}=.\mathrm{691}\:\Rightarrow\:{y}=−.\mathrm{00592}... \\ $$$$\Rightarrow\:\mathrm{try}\:{x}=\left\{.\mathrm{6901},\:.\mathrm{6902},\:...\right. \\ $$

Commented by Rio Michael last updated on 18/Sep/19

thank you so much

$${thank}\:{you}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com