Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 69092 by Mr. K last updated on 19/Sep/19

Answered by mr W last updated on 21/Sep/19

Commented by mr W last updated on 21/Sep/19

AX=(a/(cos θ))  XY=((a−a tan θ)/(cos θ))  AX−XY=((a tan θ)/(cos θ))=((a sin θ)/(cos^2  θ))  (√(AX^2 +(AX−XY)^2 ))=(√((a^2 /(cos^2  θ))+((a^2 sin^2  θ)/(cos^4  θ))))  =(√((a^2 (cos^2  θ+sin^2  θ))/(cos^4  θ)))=(a/(cos^2  θ))  ((AX^2 )/(√(AX^2 +(AX−XY)^2 )))=((((a/(cos θ)))^2 )/(a/(cos^2  θ)))=a  ⇒proved!

AX=acosθXY=aatanθcosθAXXY=atanθcosθ=asinθcos2θAX2+(AXXY)2=a2cos2θ+a2sin2θcos4θ=a2(cos2θ+sin2θ)cos4θ=acos2θAX2AX2+(AXXY)2=(acosθ)2acos2θ=aproved!

Commented by TawaTawa last updated on 21/Sep/19

Wow, nice sir

Wow,nicesir

Commented by Mr. K last updated on 21/Sep/19

Is there another way to prove  without using trigonometry?

Isthereanotherwaytoprovewithoutusingtrigonometry?

Commented by mr W last updated on 22/Sep/19

i think so. for example you can set  AB=a, BX=b.

ithinkso.forexampleyoucansetAB=a,BX=b.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com