Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 69162 by Learner-123 last updated on 20/Sep/19

Find the local extreme values of  the function :  f(x,y)= xy−x^2 −y^2 −2x−2y+4.

Findthelocalextremevaluesofthefunction:f(x,y)=xyx2y22x2y+4.

Answered by MJS last updated on 20/Sep/19

(d/dx)[−x^2 −y^2 +xy−2x−2y+4]=−2x+y−2  −2x+y−2=0 ⇒ x=((y−2)/2)  f(((y−2)/2),y)=−(3/4)y^2 −3y+5  (d/dy)[−(3/4)y^2 −3y+5]=−(3/2)y−3  −(3/2)y−3=0 ⇒ y=−2 ⇒ x=−2  the 2^(nd)  derivates are <0 ⇒ maximum at   ((x),(y),((f(x, y))) ) = (((−2)),((−2)),(8) )

ddx[x2y2+xy2x2y+4]=2x+y22x+y2=0x=y22f(y22,y)=34y23y+5ddy[34y23y+5]=32y332y3=0y=2x=2the2ndderivatesare<0maximumat(xyf(x,y))=(228)

Commented by Learner-123 last updated on 23/Sep/19

thanks sir.

thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com