Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 69188 by petrochengula last updated on 21/Sep/19

Commented by petrochengula last updated on 21/Sep/19

2.c help please

$$\mathrm{2}.{c}\:{help}\:{please} \\ $$

Commented by petrochengula last updated on 21/Sep/19

2.c help please

$$\mathrm{2}.{c}\:{help}\:{please} \\ $$

Answered by mr W last updated on 21/Sep/19

(c)  cosh x=((e^x +e^(−x) )/2)  sinh x=((e^x −e^(−x) )/2)  f(x)=cosh x+k sinh x=(((1+k)e^x +(1−k)e^(−x) )/2)  f′(x)=(((1+k)e^x −(1−k)e^(−x) )/2)=0  (1+k)e^x =(1−k)e^(−x)   ⇒e^x =(√((1−k)/(1+k)))  ((1−k)/(1+k))>0  ⇒1−k>0 and 1+k>0 ⇒−1<k<1  ⇒1−k<0 and 1+k<0 ⇒1<k<−1 ⇒impossible  ⇒condition is −1<k<1    3 cosh x+2 sinh x=3(cosh x+(2/3) sinh x)  k=(2/3)<1 ⇒minimum exists at  e^x =(√((1−(2/3))/(1+(2/3))))=(1/(√5))  ⇒mininum=3×(((1+(2/3))(1/(√5))+(1−(2/3))(√5))/2)=(√5)

$$\left({c}\right) \\ $$$$\mathrm{cosh}\:{x}=\frac{{e}^{{x}} +{e}^{−{x}} }{\mathrm{2}} \\ $$$$\mathrm{sinh}\:{x}=\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}} \\ $$$${f}\left({x}\right)=\mathrm{cosh}\:{x}+{k}\:\mathrm{sinh}\:{x}=\frac{\left(\mathrm{1}+{k}\right){e}^{{x}} +\left(\mathrm{1}−{k}\right){e}^{−{x}} }{\mathrm{2}} \\ $$$${f}'\left({x}\right)=\frac{\left(\mathrm{1}+{k}\right){e}^{{x}} −\left(\mathrm{1}−{k}\right){e}^{−{x}} }{\mathrm{2}}=\mathrm{0} \\ $$$$\left(\mathrm{1}+{k}\right){e}^{{x}} =\left(\mathrm{1}−{k}\right){e}^{−{x}} \\ $$$$\Rightarrow{e}^{{x}} =\sqrt{\frac{\mathrm{1}−{k}}{\mathrm{1}+{k}}} \\ $$$$\frac{\mathrm{1}−{k}}{\mathrm{1}+{k}}>\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−{k}>\mathrm{0}\:{and}\:\mathrm{1}+{k}>\mathrm{0}\:\Rightarrow−\mathrm{1}<{k}<\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}−{k}<\mathrm{0}\:{and}\:\mathrm{1}+{k}<\mathrm{0}\:\Rightarrow\mathrm{1}<{k}<−\mathrm{1}\:\Rightarrow{impossible} \\ $$$$\Rightarrow{condition}\:{is}\:−\mathrm{1}<{k}<\mathrm{1} \\ $$$$ \\ $$$$\mathrm{3}\:\mathrm{cosh}\:{x}+\mathrm{2}\:\mathrm{sinh}\:{x}=\mathrm{3}\left(\mathrm{cosh}\:{x}+\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{sinh}\:{x}\right) \\ $$$${k}=\frac{\mathrm{2}}{\mathrm{3}}<\mathrm{1}\:\Rightarrow{minimum}\:{exists}\:{at} \\ $$$${e}^{{x}} =\sqrt{\frac{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}}{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}}}=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}} \\ $$$$\Rightarrow{mininum}=\mathrm{3}×\frac{\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}\right)\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}+\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}\right)\sqrt{\mathrm{5}}}{\mathrm{2}}=\sqrt{\mathrm{5}} \\ $$

Commented by petrochengula last updated on 21/Sep/19

thanks

Answered by Rio Michael last updated on 21/Sep/19

2(a)  let y = sinh^(−1) x  ⇒ sinh y = x  ((e^y −e^(−y) )/2) = x  e^y −e^(−y) = 2x  multiply all through by  e^y   e^(2y) − 1 = 2xe^y   e^(2y) −2xe^y −1 =0  e^y = ((2x±(√(4x^2 + 4)))/2)  e^y = ((2x± 2(√(x^2 +1)))/2)  e^y = x±(√(x^2 +1))  choose    e^y  = x + (√(x^2 +1))  y = ln (x + (√(x^2 +1)))  but y = sinh^(−1) x  ⇒  sinh^(−1) ((3/4)) = ln ((3/4) + (√( (9/(16)) +1)))                                  = ln((3/4) + (√((25)/(16))))                                  = ln ((3/4) + (5/4)) = ln(2)

$$\mathrm{2}\left({a}\right)\:\:{let}\:{y}\:=\:{sinh}^{−\mathrm{1}} {x} \\ $$$$\Rightarrow\:{sinh}\:{y}\:=\:{x} \\ $$$$\frac{{e}^{{y}} −{e}^{−{y}} }{\mathrm{2}}\:=\:{x} \\ $$$${e}^{{y}} −{e}^{−{y}} =\:\mathrm{2}{x} \\ $$$${multiply}\:{all}\:{through}\:{by}\:\:{e}^{{y}} \\ $$$${e}^{\mathrm{2}{y}} −\:\mathrm{1}\:=\:\mathrm{2}{xe}^{{y}} \\ $$$${e}^{\mathrm{2}{y}} −\mathrm{2}{xe}^{{y}} −\mathrm{1}\:=\mathrm{0} \\ $$$${e}^{{y}} =\:\frac{\mathrm{2}{x}\pm\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\:\mathrm{4}}}{\mathrm{2}} \\ $$$${e}^{{y}} =\:\frac{\mathrm{2}{x}\pm\:\mathrm{2}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}} \\ $$$${e}^{{y}} =\:{x}\pm\sqrt{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${choose}\: \\ $$$$\:{e}^{{y}} \:=\:{x}\:+\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${y}\:=\:{ln}\:\left({x}\:+\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$${but}\:{y}\:=\:{sinh}^{−\mathrm{1}} {x} \\ $$$$\Rightarrow\:\:{sinh}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)\:=\:{ln}\:\left(\frac{\mathrm{3}}{\mathrm{4}}\:+\:\sqrt{\:\frac{\mathrm{9}}{\mathrm{16}}\:+\mathrm{1}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{ln}\left(\frac{\mathrm{3}}{\mathrm{4}}\:+\:\sqrt{\frac{\mathrm{25}}{\mathrm{16}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{ln}\:\left(\frac{\mathrm{3}}{\mathrm{4}}\:+\:\frac{\mathrm{5}}{\mathrm{4}}\right)\:=\:{ln}\left(\mathrm{2}\right)\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com