Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 69297 by ajfour last updated on 22/Sep/19

Commented by ajfour last updated on 22/Sep/19

If the graph is a cubic      y=x^3 +ax^2 +bx+c  find point of intersection of  the red and blue lines.

$${If}\:{the}\:{graph}\:{is}\:{a}\:{cubic} \\ $$$$\:\:\:\:{y}={x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${find}\:{point}\:{of}\:{intersection}\:{of} \\ $$$${the}\:{red}\:{and}\:{blue}\:{lines}. \\ $$

Answered by MJS last updated on 22/Sep/19

y=x^3 +ax^2 +bx+c  if we shift this so that the middle zero is at  x=0 we get  y=(x+α^2 )x(x−β^2 )  then it′s easy to find the tangents because  the tangent in P is  y=(3p^2 +2(α^2 −β^2 )p−α^2 β^2 )x−(2p+α^2 −β^2 )p^2   putting x=−α^2  or x=β^2  we know we′ll get  a double solution at −α^2  or β^2   ⇒  the points on the curve  P_(−α^2 ) = (((β^2 /2)),((−((2α^2 +β^2 )/8)β^4 )) )   P_β^2  = (((−(α^2 /2))),((((α^2 +2β^2 )/8)α^4 )) )  the tangents:  y_(−α^2 ) =−(β^4 /4)x−((α^2 β^4 )/4)  y_β^2  =−(α^4 /4)x+((α^4 β^2 )/4)  the intersection is  I= ((((α^2 β^2 )/(α^2 −β^2 ))),((−((α^4 β^4 )/(4(α^2 −β^2 ))))) )    we have to find α^2 , β^2  in terms of a, b, c which  is possible but nasty because we have to use  the trigonometric method...  x^3 +ax^2 +bx+c=0  x_1 <x_2 <x_3   x=t+x_2   ⇒  t^3 +(a+3x_2 )t^2 +(3x_2 ^2 +2ax_2 +b)t=0  [because the constant factor    x_2 ^3 +ax_2 ^3 +bx_2 +c is equal to zero]  ⇒  α^2 =−((3x_2 +a)/2)−((√(−3x_2 ^2 −2ax_2 +a^2 −4b))/2)  β^2 =−((3x_2 +a)/2)+((√(−3x_2 ^2 −2ax_2 +a^2 −4b))/2)  x_2 =−(a/3)+(2/3)(√(a^2 −3b))sin (((2π)/3)k+(1/3)arcsin ((2a^3 −9ab+27c)/(2(√((a^2 −3b)^3 )))))       with k=0, 1, 2  I′m not sure but I think the middle zero is  the one with z=0

$${y}={x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{shift}\:\mathrm{this}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{zero}\:\mathrm{is}\:\mathrm{at} \\ $$$${x}=\mathrm{0}\:\mathrm{we}\:\mathrm{get} \\ $$$${y}=\left({x}+\alpha^{\mathrm{2}} \right){x}\left({x}−\beta^{\mathrm{2}} \right) \\ $$$$\mathrm{then}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{because} \\ $$$$\mathrm{the}\:\mathrm{tangent}\:\mathrm{in}\:{P}\:\mathrm{is} \\ $$$${y}=\left(\mathrm{3}{p}^{\mathrm{2}} +\mathrm{2}\left(\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \right){p}−\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \right){x}−\left(\mathrm{2}{p}+\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \right){p}^{\mathrm{2}} \\ $$$$\mathrm{putting}\:{x}=−\alpha^{\mathrm{2}} \:\mathrm{or}\:{x}=\beta^{\mathrm{2}} \:\mathrm{we}\:\mathrm{know}\:\mathrm{we}'\mathrm{ll}\:\mathrm{get} \\ $$$$\mathrm{a}\:\mathrm{double}\:\mathrm{solution}\:\mathrm{at}\:−\alpha^{\mathrm{2}} \:\mathrm{or}\:\beta^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$${P}_{−\alpha^{\mathrm{2}} } =\begin{pmatrix}{\frac{\beta^{\mathrm{2}} }{\mathrm{2}}}\\{−\frac{\mathrm{2}\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }{\mathrm{8}}\beta^{\mathrm{4}} }\end{pmatrix}\:\:\:{P}_{\beta^{\mathrm{2}} } =\begin{pmatrix}{−\frac{\alpha^{\mathrm{2}} }{\mathrm{2}}}\\{\frac{\alpha^{\mathrm{2}} +\mathrm{2}\beta^{\mathrm{2}} }{\mathrm{8}}\alpha^{\mathrm{4}} }\end{pmatrix} \\ $$$$\mathrm{the}\:\mathrm{tangents}: \\ $$$${y}_{−\alpha^{\mathrm{2}} } =−\frac{\beta^{\mathrm{4}} }{\mathrm{4}}{x}−\frac{\alpha^{\mathrm{2}} \beta^{\mathrm{4}} }{\mathrm{4}} \\ $$$${y}_{\beta^{\mathrm{2}} } =−\frac{\alpha^{\mathrm{4}} }{\mathrm{4}}{x}+\frac{\alpha^{\mathrm{4}} \beta^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\mathrm{the}\:\mathrm{intersection}\:\mathrm{is} \\ $$$${I}=\begin{pmatrix}{\frac{\alpha^{\mathrm{2}} \beta^{\mathrm{2}} }{\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} }}\\{−\frac{\alpha^{\mathrm{4}} \beta^{\mathrm{4}} }{\mathrm{4}\left(\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \right)}}\end{pmatrix} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{find}\:\alpha^{\mathrm{2}} ,\:\beta^{\mathrm{2}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{a},\:{b},\:{c}\:\mathrm{which} \\ $$$$\mathrm{is}\:\mathrm{possible}\:\mathrm{but}\:\mathrm{nasty}\:\mathrm{because}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{use} \\ $$$$\mathrm{the}\:\mathrm{trigonometric}\:\mathrm{method}... \\ $$$${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} <{x}_{\mathrm{2}} <{x}_{\mathrm{3}} \\ $$$${x}={t}+{x}_{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${t}^{\mathrm{3}} +\left({a}+\mathrm{3}{x}_{\mathrm{2}} \right){t}^{\mathrm{2}} +\left(\mathrm{3}{x}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2}{ax}_{\mathrm{2}} +{b}\right){t}=\mathrm{0} \\ $$$$\left[\mathrm{because}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{factor}\right. \\ $$$$\left.\:\:{x}_{\mathrm{2}} ^{\mathrm{3}} +{ax}_{\mathrm{2}} ^{\mathrm{3}} +{bx}_{\mathrm{2}} +{c}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{zero}\right] \\ $$$$\Rightarrow \\ $$$$\alpha^{\mathrm{2}} =−\frac{\mathrm{3}{x}_{\mathrm{2}} +{a}}{\mathrm{2}}−\frac{\sqrt{−\mathrm{3}{x}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}{ax}_{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{4}{b}}}{\mathrm{2}} \\ $$$$\beta^{\mathrm{2}} =−\frac{\mathrm{3}{x}_{\mathrm{2}} +{a}}{\mathrm{2}}+\frac{\sqrt{−\mathrm{3}{x}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}{ax}_{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{4}{b}}}{\mathrm{2}} \\ $$$${x}_{\mathrm{2}} =−\frac{{a}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}}\sqrt{{a}^{\mathrm{2}} −\mathrm{3}{b}}\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}{k}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{2}{a}^{\mathrm{3}} −\mathrm{9}{ab}+\mathrm{27}{c}}{\mathrm{2}\sqrt{\left({a}^{\mathrm{2}} −\mathrm{3}{b}\right)^{\mathrm{3}} }}\right) \\ $$$$\:\:\:\:\:\mathrm{with}\:{k}=\mathrm{0},\:\mathrm{1},\:\mathrm{2} \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{but}\:\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{zero}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{one}\:\mathrm{with}\:{z}=\mathrm{0} \\ $$

Commented by ajfour last updated on 22/Sep/19

thanks sir, i expect more out of  this construction..say extract  roots.

$${thanks}\:{sir},\:{i}\:{expect}\:{more}\:{out}\:{of} \\ $$$${this}\:{construction}..{say}\:{extract} \\ $$$${roots}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com