Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 69328 by mhmd last updated on 22/Sep/19

∫_( 0) ^(π/2)  ((φ(x))/(φ(x)+φ((π/2) −x))) dx =

π/20ϕ(x)ϕ(x)+ϕ(π2x)dx=

Commented by mathmax by abdo last updated on 22/Sep/19

let I =∫_0 ^(π/2)   ((ϕ(x))/(ϕ(x)+ϕ((π/2)−x)))dx  changement (π/2)−x =t give  I = −∫_0 ^(π/2)   ((ϕ((π/2)−t))/(ϕ((π/2)−t)+ϕ(t)))(−dt) =∫_0 ^(π/2) ((ϕ((π/2)−x))/(ϕ(x)+ϕ((π/2)−x))) ⇒  2I =∫_0 ^(π/2) ((ϕ(x)+ϕ((π/2)−x))/(ϕ(x)+ϕ((π/2)−x)))dx =∫_0 ^(π/2) dx =(π/2) ⇒I =(π/4)

letI=0π2φ(x)φ(x)+φ(π2x)dxchangementπ2x=tgiveI=0π2φ(π2t)φ(π2t)+φ(t)(dt)=0π2φ(π2x)φ(x)+φ(π2x)2I=0π2φ(x)+φ(π2x)φ(x)+φ(π2x)dx=0π2dx=π2I=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com