Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 6935 by FilupSmith last updated on 05/Aug/16

v=<x_v , y_v >  u=<x_u , y_u >  v and u have angles:  θ_v =tan((y_v /x_v )) and θ_u =tan((y_u /x_u )) respectively  if t=<x_t , y_t > and has angle θ_t =((θ_v +θ_u )/2)  what are x_t  and y_t ? can this be solved?

$$\boldsymbol{{v}}=<{x}_{{v}} ,\:{y}_{{v}} > \\ $$ $$\boldsymbol{{u}}=<{x}_{{u}} ,\:{y}_{{u}} > \\ $$ $$\boldsymbol{{v}}\:\mathrm{and}\:\boldsymbol{{u}}\:\mathrm{have}\:\mathrm{angles}: \\ $$ $$\theta_{{v}} =\mathrm{tan}\left(\frac{{y}_{{v}} }{{x}_{{v}} }\right)\:\mathrm{and}\:\theta_{{u}} =\mathrm{tan}\left(\frac{{y}_{{u}} }{{x}_{{u}} }\right)\:\mathrm{respectively} \\ $$ $$\mathrm{if}\:\boldsymbol{{t}}=<{x}_{{t}} ,\:{y}_{{t}} >\:\mathrm{and}\:\mathrm{has}\:\mathrm{angle}\:\theta_{{t}} =\frac{\theta_{{v}} +\theta_{{u}} }{\mathrm{2}} \\ $$ $$\mathrm{what}\:\mathrm{are}\:{x}_{{t}} \:\mathrm{and}\:{y}_{{t}} ?\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{solved}? \\ $$

Answered by nburiburu last updated on 04/Aug/16

if the angle of t is an average of  u and v  then you could try  find  cos(θ_t ) and sin(θ_t )  but if you remember adition of vectors  then t could be define as  t =(u/(∥u∥))+(v/(∥v∥))   since both have same length, the diagonal  of the parallelogram with u and v as sides  has the average of angles.    Of course, there is more than one solution  but every solution shall be a proportional  vector to this one.

$${if}\:{the}\:{angle}\:{of}\:{t}\:{is}\:{an}\:{average}\:{of}\:\:{u}\:{and}\:{v} \\ $$ $${then}\:{you}\:{could}\:{try}\:\:{find}\:\:{cos}\left(\theta_{{t}} \right)\:{and}\:{sin}\left(\theta_{{t}} \right) \\ $$ $${but}\:{if}\:{you}\:{remember}\:{adition}\:{of}\:{vectors} \\ $$ $${then}\:{t}\:{could}\:{be}\:{define}\:{as} \\ $$ $${t}\:=\frac{{u}}{\parallel{u}\parallel}+\frac{{v}}{\parallel{v}\parallel}\: \\ $$ $${since}\:{both}\:{have}\:{same}\:{length},\:{the}\:{diagonal} \\ $$ $${of}\:{the}\:{parallelogram}\:{with}\:{u}\:{and}\:{v}\:{as}\:{sides} \\ $$ $${has}\:{the}\:{average}\:{of}\:{angles}. \\ $$ $$ \\ $$ $${Of}\:{course},\:{there}\:{is}\:{more}\:{than}\:{one}\:{solution} \\ $$ $${but}\:{every}\:{solution}\:{shall}\:{be}\:{a}\:{proportional} \\ $$ $${vector}\:{to}\:{this}\:{one}. \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com