Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 6947 by Tawakalitu. last updated on 03/Aug/16

Prove that     ∫_0 ^1 {∫_0 ^1 ((x − y)/((x + y)^3 ))  dy} dx   =  (1/2)

$${Prove}\:{that}\: \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left\{\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{x}\:−\:{y}}{\left({x}\:+\:{y}\right)^{\mathrm{3}} }\:\:{dy}\right\}\:{dx}\:\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by Yozzii last updated on 03/Aug/16

Q(x)=∫_0 ^1 ((x−y)/((x+y)^3 ))dy  Let u=x+y⇒du=dy  ⇒y=u−x  At y=0,u=x; at y=1,u=x+1  ∴Q(x)=∫_x ^(x+1) ((x−(u−x))/u^3 )du  Q(x)=∫_x ^(x+1) u^(−3) (2x−u)du=∫_x ^(x+1) (2xu^(−3) −u^(−2) )du  Q(x)=((2xu^(−2) )/(−2))−(u^(−1) /(−1))∣_x ^(x+1)   Q(x)=(1/u)−(x/u^2 )∣_x ^(x+1)   Q(x)=(1/(x+1))−(x/((x+1)^2 ))−(1/x)+(x/x^2 )  Q(x)=(1/(x+1))−((2(x+1−1))/(2(x+1)^2 ))  Q(x)=(1/(x+1))+(1/((x+1)^2 ))−(1/2)(((2(x+1))/((x+1)^2 )))  ∴I=∫_0 ^1 {∫_0 ^1 ((x−y)/((x+y)^3 ))dy}dx=∫_0 ^1 Q(x)dx  I=[ln∣x+1∣−(1/(x+1))−(1/2)ln∣(x+1)^2 ∣]_0 ^1   I=[ln∣x+1∣−(1/(x+1))−(1/2)×2×ln∣x+1∣]_0 ^1   I=((−1)/(x+1))∣_0 ^1 =((−1)/2)−(((−1)/1))=1−(1/2)=(1/2).  ∴ ∫_0 ^1 ∫_0 ^1 ((x−y)/((x+y)^3 ))dydx=(1/2).

$${Q}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−{y}}{\left({x}+{y}\right)^{\mathrm{3}} }{dy} \\ $$$${Let}\:{u}={x}+{y}\Rightarrow{du}={dy} \\ $$$$\Rightarrow{y}={u}−{x} \\ $$$${At}\:{y}=\mathrm{0},{u}={x};\:{at}\:{y}=\mathrm{1},{u}={x}+\mathrm{1} \\ $$$$\therefore{Q}\left({x}\right)=\int_{{x}} ^{{x}+\mathrm{1}} \frac{{x}−\left({u}−{x}\right)}{{u}^{\mathrm{3}} }{du} \\ $$$${Q}\left({x}\right)=\int_{{x}} ^{{x}+\mathrm{1}} {u}^{−\mathrm{3}} \left(\mathrm{2}{x}−{u}\right){du}=\int_{{x}} ^{{x}+\mathrm{1}} \left(\mathrm{2}{xu}^{−\mathrm{3}} −{u}^{−\mathrm{2}} \right){du} \\ $$$${Q}\left({x}\right)=\frac{\mathrm{2}{xu}^{−\mathrm{2}} }{−\mathrm{2}}−\frac{{u}^{−\mathrm{1}} }{−\mathrm{1}}\mid_{{x}} ^{{x}+\mathrm{1}} \\ $$$${Q}\left({x}\right)=\frac{\mathrm{1}}{{u}}−\frac{{x}}{{u}^{\mathrm{2}} }\mid_{{x}} ^{{x}+\mathrm{1}} \\ $$$${Q}\left({x}\right)=\frac{\mathrm{1}}{{x}+\mathrm{1}}−\frac{{x}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{{x}}+\frac{{x}}{{x}^{\mathrm{2}} } \\ $$$${Q}\left({x}\right)=\frac{\mathrm{1}}{{x}+\mathrm{1}}−\frac{\mathrm{2}\left({x}+\mathrm{1}−\mathrm{1}\right)}{\mathrm{2}\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${Q}\left({x}\right)=\frac{\mathrm{1}}{{x}+\mathrm{1}}+\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}\left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$$$\therefore{I}=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left\{\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{x}−{y}}{\left({x}+{y}\right)^{\mathrm{3}} }{dy}\right\}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {Q}\left({x}\right){dx} \\ $$$${I}=\left[{ln}\mid{x}+\mathrm{1}\mid−\frac{\mathrm{1}}{{x}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\left({x}+\mathrm{1}\right)^{\mathrm{2}} \mid\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${I}=\left[{ln}\mid{x}+\mathrm{1}\mid−\frac{\mathrm{1}}{{x}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×{ln}\mid{x}+\mathrm{1}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${I}=\frac{−\mathrm{1}}{{x}+\mathrm{1}}\mid_{\mathrm{0}} ^{\mathrm{1}} =\frac{−\mathrm{1}}{\mathrm{2}}−\left(\frac{−\mathrm{1}}{\mathrm{1}}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}. \\ $$$$\therefore\:\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−{y}}{\left({x}+{y}\right)^{\mathrm{3}} }{dydx}=\frac{\mathrm{1}}{\mathrm{2}}. \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 03/Aug/16

You are making my day... Thanks so much.. am really happy

$${You}\:{are}\:{making}\:{my}\:{day}...\:{Thanks}\:{so}\:{much}..\:{am}\:{really}\:{happy} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com