Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 69535 by naka3546 last updated on 24/Sep/19

Commented by naka3546 last updated on 24/Sep/19

without  u

withoutu

Answered by MJS last updated on 24/Sep/19

atan t =k(1+sec t)  ⇒  k+kcos t −asin t =0  t=2arctan u  2((k−au)/(u^2 +1))=0 ⇒ u=(k/a) ⇒ t=2arctan (k/a)  ⇒  2arctan (k/3) +2arctan (k/4) +2arctan (k/5) +2arctan (k/6) =2π  arctan (k/3) +arctan (k/4) +arctan (k/5) +arctan (k/6) =π       tan (arctan a +arctan b)=((a+b)/(1−ab))       tan (arctan a +arctan b +arctan c)=            =((a+b+c−abc)/(1−(ab+ac+bc)))       tan (arctan a +arctan b +arctan c +arctan d)=            =((a+b+c+d−(abc+abd+acd+bcd))/(1+abcd−(ab+ac+ad+bc+bdd+cd)))  ⇒  −((18k(k^2 −19))/(k^4 −119k^2 +360))=0 ⇒ k=±(√(19))∨k=0       but k=0 ⇒ w=x=y=z=0               k=−(√(19)) doesn′t fit the above equation  ⇒  k=(√(19))

atant=k(1+sect)k+kcostasint=0t=2arctanu2kauu2+1=0u=kat=2arctanka2arctank3+2arctank4+2arctank5+2arctank6=2πarctank3+arctank4+arctank5+arctank6=πtan(arctana+arctanb)=a+b1abtan(arctana+arctanb+arctanc)==a+b+cabc1(ab+ac+bc)tan(arctana+arctanb+arctanc+arctand)==a+b+c+d(abc+abd+acd+bcd)1+abcd(ab+ac+ad+bc+bdd+cd)18k(k219)k4119k2+360=0k=±19k=0butk=0w=x=y=z=0k=19doesntfittheaboveequationk=19

Commented by mind is power last updated on 24/Sep/19

 nice solution sir ,k=0    we can have π,π,0,0

nicesolutionsir,k=0wecanhaveπ,π,0,0

Commented by MJS last updated on 24/Sep/19

true

true

Answered by mr W last updated on 24/Sep/19

sin w=(k/3)(1+cos w)  sin^2  w=(k^2 /3^2 )(1+cos^2  w+2 cos w)  ⇒(1+(3^2 /k^2 ))cos^2  w+2 cos w+(1−(3^2 /k^2 ))=0  ⇒cos w=((−1±(3^2 /k^2 ))/(1+(3^2 /k^2 )))= { ((−1 ⇒w=π)),(((3^2 −k^2 )/(3^2 +k^2 ))) :}  similarly  ⇒cos x= { ((−1 ⇒x=π)),(((4^2 −k^2 )/(4^2 +k^2 ))) :}  ⇒cos y= { ((−1 ⇒y=π)),(((5^2 −k^2 )/(5^2 +k^2 ))) :}  ⇒cos z= { ((−1 ⇒z=π)),(((6^2 −k^2 )/(6^2 +k^2 ))) :}  ....  k=±(√(19))=±4.3589 ???

sinw=k3(1+cosw)sin2w=k232(1+cos2w+2cosw)(1+32k2)cos2w+2cosw+(132k2)=0cosw=1±32k21+32k2={1w=π32k232+k2similarlycosx={1x=π42k242+k2cosy={1y=π52k252+k2cosz={1z=π62k262+k2....k=±19=±4.3589???

Commented by mind is power last updated on 24/Sep/19

   nice sir please how how you put  { for two ligns/?

nicesirpleasehowhowyouput{fortwoligns/?

Commented by mr W last updated on 24/Sep/19

just use the third button from left on  the bottom of menu.  example  { ((line 1)),((line 2)) :}

justusethethirdbuttonfromleftonthebottomofmenu.example{line1line2

Commented by mind is power last updated on 24/Sep/19

thanx

thanx

Answered by mind is power last updated on 24/Sep/19

⇒3sin(w)=k(cos(w)+1)  4sin(x)=k(cos(x)+1)  5sin(y)=k(cos(y)+1)  6sin(z)=k(cos(z)+1)  ⇔3tg((w/2))=4tg((x/2))=5tg((y/2))=6tg((z/2))=k  tg(a)+tg(b)=((sin(a+b))/(cos(a)cos(b)))  ⇒tg(((x+w)/2))+tg(((z+y)/2))=((sin(((x+y+z+w)/2)))/(cos(((x+y)/2))cos(((z+w)/2))))  tg(a+b)=((tg(a)+tg(b))/(1−tg(a)tg(b)))  tg(((x+w)/2))+tg(((y+z)/2))=((tg((x/2))+tg((w/2)))/(1−tg((x/2))tg((w/2))))+((tg((y/2))+tg((z/2)))/(1−tg((y/2)).tg((z/2))))=0  we have tg((w/2))=(k/3)  tg((x/2))=(k/4)  ,  tg((y/2))=(k/5),   tg((z/2))=(k/6)  ⇒(((k/3)+(k/4))/(1−(k^2 /(12))))+(((k/5)+(k/6))/(1−(k^2 /(30))))=0  ⇒((7k)/(12−k^2 ))+((11k)/(30−k^2 ))=0    ⇒k(((7.(30−k^2 )+11(12−k^2 ))/((12−k^2 )(30−k^2 ))))=0  ⇒k=0 or   210−7k^2 +132−11k^2 =0⇒k^2 =((342)/(18))=19    ⇒k=+_− (√(19))  k=−(√(19))⇒(w/2) ,(x/2),(y/2),(x/2)>(π/2)⇒x+y+z+w>4π>2π   k=(√(19))    i will study this later k∈{0,(√(19))}

3sin(w)=k(cos(w)+1)4sin(x)=k(cos(x)+1)5sin(y)=k(cos(y)+1)6sin(z)=k(cos(z)+1)3tg(w2)=4tg(x2)=5tg(y2)=6tg(z2)=ktg(a)+tg(b)=sin(a+b)cos(a)cos(b)tg(x+w2)+tg(z+y2)=sin(x+y+z+w2)cos(x+y2)cos(z+w2)tg(a+b)=tg(a)+tg(b)1tg(a)tg(b)tg(x+w2)+tg(y+z2)=tg(x2)+tg(w2)1tg(x2)tg(w2)+tg(y2)+tg(z2)1tg(y2).tg(z2)=0wehavetg(w2)=k3tg(x2)=k4,tg(y2)=k5,tg(z2)=k6k3+k41k212+k5+k61k230=07k12k2+11k30k2=0k(7.(30k2)+11(12k2)(12k2)(30k2))=0k=0or2107k2+13211k2=0k2=34218=19k=+19k=19w2,x2,y2,x2>π2x+y+z+w>4π>2πk=19iwillstudythislaterk{0,19}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com