Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93634 by abdomathmax last updated on 14/May/20

calculate ∫_0 ^∞    (dx/(x^4  +x^2  +1))

calculate0dxx4+x2+1

Commented by mathmax by abdo last updated on 14/May/20

I =∫_0 ^∞   (dx/(x^4  +x^2  +1)) ⇒2A =∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1)) let ϕ(z) =(1/(z^4  +z^2  +1))  poles of ϕ?     z^4  +z^2  +1 =0 →t^2  +t +1 =0  (t=z^2 )  Δ=−3 ⇒t_1 =((−1+i(√3))/2) =e^((i2π)/3)    , t_2 =((−1−i(√3))/2) =e^(−((i2π)/3))  ⇒  ϕ(z) =(1/((z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) ))) =(1/((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^((−iπ)/3) )(z+e^(−((iπ)/3)) )))  rdsidus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/3)  )+Res(ϕ,−e^(−((iπ)/3)) )}  Res(ϕ,e^((iπ)/3) ) =(1/(2e^((iπ)/3) (2isin(((2π)/3))))) =(e^(−((iπ)/3)) /(4i×((√3)/2))) =(e^(−((iπ)/3)) /(2i(√3)))  Res(ϕ,−e^(−((iπ)/3)) ) =(1/(−2e^(−((iπ)/3)) (−2i sin(((2π)/3))))) =(e^((iπ)/3) /(4i ×((√3)/2))) =(e^((iπ)/3) /(2i(√3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/(2i(√3))){ e^(−((iπ)/3))  +e^((iπ)/3) } =(π/(√3))(2cos((π/3))) =(π/(√3))  2∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1)) =(π/(√3)) ⇒★∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1)) =(π/(2(√3))) ★

I=0dxx4+x2+12A=+dxx4+x2+1letφ(z)=1z4+z2+1polesofφ?z4+z2+1=0t2+t+1=0(t=z2)Δ=3t1=1+i32=ei2π3,t2=1i32=ei2π3φ(z)=1(z2ei2π3)(z2ei2π3)=1(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)rdsidustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)}Res(φ,eiπ3)=12eiπ3(2isin(2π3))=eiπ34i×32=eiπ32i3Res(φ,eiπ3)=12eiπ3(2isin(2π3))=eiπ34i×32=eiπ32i3+φ(z)dz=2iπ2i3{eiπ3+eiπ3}=π3(2cos(π3))=π32+dxx4+x2+1=π3+dxx4+x2+1=π23

Commented by mathmax by abdo last updated on 14/May/20

sorry  2 ∫_0 ^∞  (dx/(x^4  +x^2  +1)) =(π/(√3)) ⇒★ ∫_0 ^∞   (dx/(x^4  +x^2  +1)) =(π/(2(√3))) ★

sorry20dxx4+x2+1=π30dxx4+x2+1=π23

Answered by Kunal12588 last updated on 14/May/20

(x^4 +x^2 +1)=(ax^2 +bx+c)(px^2 +qx+r)  x^4 +x^2 +1=apx^4 +(aq+bp)x^3 +(ar+bq+cp)x^2                              +(br+cq)x+cr  a=1, b=±1, c=1  p=1, q=∓1, r=1  x^4 +x^2 +1=(x^2 +x+1)(x^2 −x+1)    (1/(x^4 +x^2 +1))=((ax+b)/(x^2 +x+1))+((px+q)/(x^2 −x+1))  1=(a+p)x^3 +(−a+b+p+q)x^2 +(a−b+p+q)x          +(b+q)  a=(1/2), b=(1/2)  p=((−1)/2), q=(1/2)  (1/(x^4 +x^2 +1))=((x+1)/(x^2 +x+1))−((x−1)/(x^4 +x+1))    I=∫(dx/(x^4 +x^2 +1))=(1/2)∫((x+1)/(x^2 +x+1))dx−(1/2)∫((x−1)/(x^2 +x+1))dx  I_1 =(1/2)∫((x+1)/(x^2 +x+1))dx  =(1/4)∫((2x+1)/(x^2 +x+1))dx+(1/4)∫(dx/(x^2 +x+1))  =(1/4)ln∣x^2 +x+1∣+(1/4)∫(dx/((x+(1/2))^2 +(3/4)))  =(1/4)ln∣x^2 +x+1∣+(1/4)×(2/(√3)) tan^(−1) (((x+(1/2)))/((√3)/2))+c    I_1 =(1/4)ln∣x^2 +x+1∣+(1/(2(√3))) tan^(−1) ((2x+1)/(√3))+m    I_2 =(1/2)∫((x−1)/(x^2 −x+1))dx  =(1/4)∫((2x−1)/(x^2 −x+1))dx−(1/4)∫(dx/(x^2 −x+1))  =(1/4)ln∣x^2 −x+1∣−(1/4)∫(dx/((x−(1/2))^2 +(((√3)/2))^2 ))  I_2 =(1/4)ln∣x^2 −x+1∣−(1/(2(√3)))tan^(−1) ((2x−1)/(√3))+n    I=(1/4)ln∣x^2 +x+1∣+(1/(2(√3))) tan^(−1) ((2x+1)/(√3))        −(1/4)ln∣x^2 −x+1∣+(1/(2(√3)))tan^(−1) ((2x−1)/(√3))+C  =(1/4)ln∣((x^2 +x+1)/(x^2 −x+1))∣+(1/(2(√3)))[tan^(−1) ((2x+1)/(√3))+tan^(−1) ((2x−1)/(√3))]+C  ∫_0 ^∞ (dx/(x^4 +x^2 +1))=(1/4)[ln∣((x^2 +x+1)/(x^2 −x+1))∣]_0 ^∞ +                            +(1/(2(√3)))[tan^(−1) ((2x+1)/(√3))+tan^(−1) ((2x−1)/(√3))]_0 ^∞   =(1/4){ln(((1+(1/∞)+(1/∞^2 ))/(1−(1/∞)+(1/∞^2 ))))−ln(((0^2 +0+1)/(0^2 −0+1)))}  +(1/(2(√3))){tan^(−1) (∞)+tan^(−1) (∞)−tan^(−1) ((1/(√3)))−tan^(−1) (((−1)/(√3)))}  =(1/4)[ln(1)−ln(1)]+(1/(2(√3)))[(π/2)+(π/2)−(π/6)+(π/6)]  =(π/(2(√3)))    ∫_0 ^∞ (dx/(x^4 +x^2 +1))=(π/(2(√3)))

(x4+x2+1)=(ax2+bx+c)(px2+qx+r)x4+x2+1=apx4+(aq+bp)x3+(ar+bq+cp)x2+(br+cq)x+cra=1,b=±1,c=1p=1,q=1,r=1x4+x2+1=(x2+x+1)(x2x+1)1x4+x2+1=ax+bx2+x+1+px+qx2x+11=(a+p)x3+(a+b+p+q)x2+(ab+p+q)x+(b+q)a=12,b=12p=12,q=121x4+x2+1=x+1x2+x+1x1x4+x+1I=dxx4+x2+1=12x+1x2+x+1dx12x1x2+x+1dxI1=12x+1x2+x+1dx=142x+1x2+x+1dx+14dxx2+x+1=14lnx2+x+1+14dx(x+12)2+34=14lnx2+x+1+14×23tan1(x+12)32+cI1=14lnx2+x+1+123tan12x+13+mI2=12x1x2x+1dx=142x1x2x+1dx14dxx2x+1=14lnx2x+114dx(x12)2+(32)2I2=14lnx2x+1123tan12x13+nI=14lnx2+x+1+123tan12x+1314lnx2x+1+123tan12x13+C=14lnx2+x+1x2x+1+123[tan12x+13+tan12x13]+C0dxx4+x2+1=14[lnx2+x+1x2x+1]0++123[tan12x+13+tan12x13]0=14{ln(1+1+1211+12)ln(02+0+1020+1)}+123{tan1()+tan1()tan1(13)tan1(13)}=14[ln(1)ln(1)]+123[π2+π2π6+π6]=π230dxx4+x2+1=π23

Commented by niroj last updated on 14/May/20

Great hardwork����

Commented by prakash jain last updated on 14/May/20

������

Commented by Kunal12588 last updated on 14/May/20

thanks sir!

Commented by mathmax by abdo last updated on 14/May/20

thankx for this hardwork

thankxforthishardwork

Answered by Ar Brandon last updated on 14/May/20

L=∫_0 ^∞ (dx/(x^4 +x^2 +1))=(1/2)∫_0 ^∞ (((x^2 +1)−(x^2 −1))/(x^4 +x^2 +1))dx  ⇒2L=∫_0 ^∞ ((x^2 +1)/(x^4 +x^2 +1))dx−∫_0 ^∞ ((x^2 −1)/(x^4 +x^2 +1))dx  ⇒2L=∫_0 ^∞ ((1+(1/x^2 ))/(x^2 +1+(1/x^2 )))dx−∫_0 ^∞ ((1−(1/x^2 ))/(x^2 +1+(1/x^2 )))dx  ⇒2L=∫_0 ^∞ ((1+(1/x^2 ))/((x−(1/x))^2 +3))dx−∫_0 ^∞ ((1−(1/x^2 ))/((x+(1/x))^2 −1))dx  ⇒2L=_(u=x−(1/x)) ^(v=x+(1/x)) ∫_(−∞) ^(+∞) (du/(u^2 +3))−∫_(+∞) ^(+∞) (dv/(v^2 −1))  2L=((√3)/3)[arctan((u/(√3)))]_(−∞) ^(+∞)   2L=((π(√3))/3)⇒L=((π(√3))/6)  ∫_0 ^∞ (dx/(x^4 +x^2 +1))=((π(√3))/6)

L=0dxx4+x2+1=120(x2+1)(x21)x4+x2+1dx2L=0x2+1x4+x2+1dx0x21x4+x2+1dx2L=01+1x2x2+1+1x2dx011x2x2+1+1x2dx2L=01+1x2(x1x)2+3dx011x2(x+1x)21dx2L=v=x+1xu=x1x+duu2+3++dvv212L=33[arctan(u3)]+2L=π33L=π360dxx4+x2+1=π36

Terms of Service

Privacy Policy

Contact: info@tinkutara.com