Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 69597 by ozodbek last updated on 25/Sep/19

Commented by mathmax by abdo last updated on 25/Sep/19

generally let find f(a) =∫(√(x^2 +a^2 ))dx  with a>0  changement x =ash(t) give f(a)=∫ach(t)ach(t)dt  =a^2 ∫ ch^2 (t)dt =a^2 ∫((1+ch(2t))/2)dt =(a^2 /2)t +(a^2 /2) ∫ch(2t)dt  =(a^2 /2)t  + (a^2 /4)sh(2t)+c =(a^2 /2)t +(a^2 /2)sh(t)ch(t) +c  we have t =argsh((x/a)) =ln((x/a)+(√(1+(x^2 /a^2 )))) =ln(((x+(√(x^2 +a^2 )))/a)) ⇒  f(a) =(a^2 /2)ln(((x+(√(x^2 +a^2 )))/a))+(a^2 /2)(x/a)(√(1+(x^2 /a^2 ))) +c  =(a^2 /2)ln(x+(√(x^2 +a^2 )))−(a^2 /2)ln(a) +(x/2)(√(x^2 +a^2 )) +c  =(a^2 /2)ln(x+(√(x^2 +a^2 ))) +(x/2)(√(x^2 +a^2 )) +C  a=2 ⇒ ∫ (√(4+x^2 ))dx =2ln(x+(√(x^2 +4)))+(x/2)(√(x^2 +4)) +C

$${generally}\:{let}\:{find}\:{f}\left({a}\right)\:=\int\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$${changement}\:{x}\:={ash}\left({t}\right)\:{give}\:{f}\left({a}\right)=\int{ach}\left({t}\right){ach}\left({t}\right){dt} \\ $$$$={a}^{\mathrm{2}} \int\:{ch}^{\mathrm{2}} \left({t}\right){dt}\:={a}^{\mathrm{2}} \int\frac{\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)}{\mathrm{2}}{dt}\:=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{t}\:+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\:\int{ch}\left(\mathrm{2}{t}\right){dt} \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{t}\:\:+\:\frac{{a}^{\mathrm{2}} }{\mathrm{4}}{sh}\left(\mathrm{2}{t}\right)+{c}\:=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{t}\:+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{sh}\left({t}\right){ch}\left({t}\right)\:+{c} \\ $$$${we}\:{have}\:{t}\:={argsh}\left(\frac{{x}}{{a}}\right)\:={ln}\left(\frac{{x}}{{a}}+\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}\right)\:={ln}\left(\frac{{x}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }}{{a}}\right)\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{ln}\left(\frac{{x}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }}{{a}}\right)+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\frac{{x}}{{a}}\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}\:+{c} \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }\right)−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{ln}\left({a}\right)\:+\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }\:+{c} \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }\right)\:+\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }\:+{C} \\ $$$${a}=\mathrm{2}\:\Rightarrow\:\int\:\sqrt{\mathrm{4}+{x}^{\mathrm{2}} }{dx}\:=\mathrm{2}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\right)+\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\:+{C} \\ $$

Answered by MJS last updated on 25/Sep/19

∫(√(4+x^2 ))dx=       [t=sinh^(−1)  (x/2) → dx=(√(x^2 +4))dt]  =4∫cosh^2  t dt=2∫dt+2∫cosh 2t dt=  =2t+sinh 2t =2sinh^(−1)  (x/2) +((x(√(x^2 +4)))/2) +C  different path leads to  2ln (x+(√(x^2 +4))) +((x(√(x^2 +4)))/2) +C

$$\int\sqrt{\mathrm{4}+{x}^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sinh}^{−\mathrm{1}} \:\frac{{x}}{\mathrm{2}}\:\rightarrow\:{dx}=\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}{dt}\right] \\ $$$$=\mathrm{4}\int\mathrm{cosh}^{\mathrm{2}} \:{t}\:{dt}=\mathrm{2}\int{dt}+\mathrm{2}\int\mathrm{cosh}\:\mathrm{2}{t}\:{dt}= \\ $$$$=\mathrm{2}{t}+\mathrm{sinh}\:\mathrm{2}{t}\:=\mathrm{2sinh}^{−\mathrm{1}} \:\frac{{x}}{\mathrm{2}}\:+\frac{{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\:+{C} \\ $$$$\mathrm{different}\:\mathrm{path}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\mathrm{2ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\right)\:+\frac{{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com