All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 69603 by Mikael last updated on 25/Sep/19
∫x3arcsinxdx
Answered by MJS last updated on 25/Sep/19
byparts∫u′v=uv−∫uv′u′=x3→u=x44v=arcsinx→v′=11−x2∫x3arcsinxdx=x44arcsinx−14∫x41−x2dx∫x41−x2dx=[t=arcsinx→dx=1−x2dt]=∫sin4tdt=18∫cos4tdt−12∫cos2tdt+38∫dt==132sin4t−14sin2t+38t==−(14x3−38x)1−x2+38arcsinx∫x3arcsinxdx=(14x4−332)arcsinx+132x(2x2+3)1−x2+C
Commented by Mikaell last updated on 27/Sep/19
greatSir.thankyou.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com