Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 69681 by ajfour last updated on 26/Sep/19

Commented by ajfour last updated on 26/Sep/19

Q.69496   (A try..)

Q.69496(Atry..)

Commented by ajfour last updated on 26/Sep/19

Radius of circle.

Radiusofcircle.

Answered by ajfour last updated on 30/Sep/19

Commented by ajfour last updated on 30/Sep/19

let cos α=a, cos β=h, cos γ=m,  cos δ=u   &  sin α=b, sin β=k,  sin γ=n, sin δ=v  x_D =−qa+rm=ph−su  ⇒    su+rm = qa+ph     ...(i)  y_D =qb+rn=pk+sv  ⇒    sv−rn = qb−pk      ...(ii)  ∣CP ∣=R =∣CT∣ ⇒  _________________________    (−qa−m)^2 +(qb−n−R)^2 =R^2     [−qa+(r+6)m]^2 +(qb+(r+6)n−R]^2 =R^2   ⇒ r+6 and −1 are roots of eq.  (−qa+mx)^2 +(qb+nx−R)^2 =R^2     (m^2 +n^2 )x^2 +2x[−qam+n(qb−R)]   +q^2 a^2 +q^2 b^2 +R^2 −2qbR−R^2 =0    ⇒ x^2 +2x[−qam+n(qb−R)]                            +q^2 −2qbR=0  _________________________  ⇒   r+5=qam−n(qb−R)    &        m^2 +n^2 =1        .....(iii),(iv)   [r+5+n(qb−R)]^2 =q^2 a^2 (1−n^2 )  ⇒   n^2 {(qb−R)^2 +q^2 a^2 }+   +2(r+5)(qb−R)n+(r+5)^2 −q^2 a^2 =0  _________________________   ∣CM∣=R =∣CS∣  ⇒   (ph+3u)^2 +(pk−3v−R)^2 =R^2       [ph−(s+5)u]^2 +[pk+(s+5)v−R]^2 =R^2     ⇒  s+5  and −3  are roots of eq.    (ph−ux)^2 +(pk+vx−R)^2 =R^2   _________________________  ⇒ sum of roots (s+5)+(−3)=   s+2=phu−v(pk−R)    (as h^2 +k^2 =1)  &    u^2 +v^2 =1                ......(v),(vi)  _________________________  plus  _________________________    a^2 +b^2 =1 ,  h^2 +k^2 =1 ..(vii)&(viii)    2q=r+6                                ....(ix)    4p=3(s+5)                         ....(x)    5(s+3)=6(r+1)              ....(xi)    further    2bR=q+2   &   ..(xii)                         2kR=p+4      ....(xiii)  Thirteen eqs. in thirteen unknowns   a,b,h,k,m,n,u,v,p,q,r,s,&R.

letcosα=a,cosβ=h,cosγ=m,cosδ=u&sinα=b,sinβ=k,sinγ=n,sinδ=vxD=qa+rm=phsusu+rm=qa+ph...(i)yD=qb+rn=pk+svsvrn=qbpk...(ii)CP∣=R=∣CT_________________________(qam)2+(qbnR)2=R2[qa+(r+6)m]2+(qb+(r+6)nR]2=R2r+6and1arerootsofeq.(qa+mx)2+(qb+nxR)2=R2(m2+n2)x2+2x[qam+n(qbR)]+q2a2+q2b2+R22qbRR2=0x2+2x[qam+n(qbR)]+q22qbR=0_________________________r+5=qamn(qbR)&m2+n2=1.....(iii),(iv)[r+5+n(qbR)]2=q2a2(1n2)n2{(qbR)2+q2a2}++2(r+5)(qbR)n+(r+5)2q2a2=0_________________________CM∣=R=∣CS(ph+3u)2+(pk3vR)2=R2[ph(s+5)u]2+[pk+(s+5)vR]2=R2s+5and3arerootsofeq.(phux)2+(pk+vxR)2=R2_________________________sumofroots(s+5)+(3)=s+2=phuv(pkR)(ash2+k2=1)&u2+v2=1......(v),(vi)_________________________plus_________________________a2+b2=1,h2+k2=1..(vii)&(viii)2q=r+6....(ix)4p=3(s+5)....(x)5(s+3)=6(r+1)....(xi)further2bR=q+2&..(xii)2kR=p+4....(xiii)Thirteeneqs.inthirteenunknownsa,b,h,k,m,n,u,v,p,q,r,s,&R.

Answered by mr W last updated on 30/Sep/19

Commented by mr W last updated on 30/Sep/19

(p+4)^2 =4(R^2 −a^2 )  ⇒4a^2 =4R^2 −(p+4)^2   (q+2)^2 =4(R^2 −b^2 )  ⇒4b^2 =4R^2 −(q+2)^2   (r+6+1)^2 =4(R^2 −c^2 )  ⇒4c^2 =4R^2 −(r+7)^2   (s+5+3)^2 =4(R^2 −d^2 )  ⇒4d^2 =4R^2 −(s+8)^2     a^2 +(p−((p+4)/2))^2 =b^2 +(q−((q+2)/2))^2   4a^2 +(p−4)^2 =4b^2 +(q−2)^2   4R^2 −(p+4)^2 +(p−4)^2 =4R^2 −(q+2)^2 +(q−2)^2   ⇒2p=q    b^2 +(((q+2)/2)−2)^2 =c^2 +(((r+6+1)/2)−1)^2   4b^2 +(q−2)^2 =4c^2 +(r+5)^2   4R^2 −(q+2)^2 +(q−2)^2 =4R^2 −(r+7)^2 +(r+5)^2   ⇒2q=r+6    c^2 +(((r+6+1)/2)−6)^2 =d^2 +(((s+5+3)/2)−5)^2   4c^2 +(r−5)^2 =4d^2 +(s−2)^2   4R^2 −(r+7)^2 +(r−5)^2 =4R^2 −(s+8)^2 +(s−2)^2   ⇒6(r+1)=5(s+3)    d^2 +(((s+5+3)/2)−3)^2 =a^2 +(((p+4)/2)−4)^2   4d^2 +(s+2)^2 =4a^2 +(p−4)^2   4R^2 −(s+8)^2 +(s+2)^2 =4R^2 −(p+4)^2 +(p−4)^2   ⇒3(s+5)=4p    q=2p  r=2q−6=4p−6  s=(6/5)(r+1)−3=((24p)/5)−9  3(((24p)/5)−9)=4p  3(24p−45)=20p  ⇒p=((135)/(52))  ⇒q=((135)/(26))  ⇒r=4×((135)/(52))−6=((57)/(13))  ⇒s=((24)/5)×((135)/(52))−9=((45)/(13))  ......

(p+4)2=4(R2a2)4a2=4R2(p+4)2(q+2)2=4(R2b2)4b2=4R2(q+2)2(r+6+1)2=4(R2c2)4c2=4R2(r+7)2(s+5+3)2=4(R2d2)4d2=4R2(s+8)2a2+(pp+42)2=b2+(qq+22)24a2+(p4)2=4b2+(q2)24R2(p+4)2+(p4)2=4R2(q+2)2+(q2)22p=qb2+(q+222)2=c2+(r+6+121)24b2+(q2)2=4c2+(r+5)24R2(q+2)2+(q2)2=4R2(r+7)2+(r+5)22q=r+6c2+(r+6+126)2=d2+(s+5+325)24c2+(r5)2=4d2+(s2)24R2(r+7)2+(r5)2=4R2(s+8)2+(s2)26(r+1)=5(s+3)d2+(s+5+323)2=a2+(p+424)24d2+(s+2)2=4a2+(p4)24R2(s+8)2+(s+2)2=4R2(p+4)2+(p4)23(s+5)=4pq=2pr=2q6=4p6s=65(r+1)3=24p593(24p59)=4p3(24p45)=20pp=13552q=13526r=4×135526=5713s=245×135529=4513......

Commented by mr W last updated on 30/Sep/19

we can also get directly:  5(s+3)=6(r+1)  4p=3(s+5)  2q=1×(r+6)

wecanalsogetdirectly:5(s+3)=6(r+1)4p=3(s+5)2q=1×(r+6)

Commented by ajfour last updated on 01/Oct/19

Thanks Sir, can we now   calculate Radius ?

ThanksSir,canwenowcalculateRadius?

Commented by mr W last updated on 02/Oct/19

the radius should be unique, but i  have not got a way to calculate.

theradiusshouldbeunique,butihavenotgotawaytocalculate.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com