Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 69766 by Rio Michael last updated on 27/Sep/19

find  (dy/dx)  at the point  (0,3)  when  2x^2 y + y + 4xy^2  = 2x + 3

$${find}\:\:\frac{{dy}}{{dx}}\:\:{at}\:{the}\:{point}\:\:\left(\mathrm{0},\mathrm{3}\right)\:\:{when}\:\:\mathrm{2}{x}^{\mathrm{2}} {y}\:+\:{y}\:+\:\mathrm{4}{xy}^{\mathrm{2}} \:=\:\mathrm{2}{x}\:+\:\mathrm{3}\: \\ $$

Commented by kaivan.ahmadi last updated on 27/Sep/19

f(x,y)=2x^2 y+y+4xy^2 −2x−3=0  (dy/dx)=−((f_x ′)/(f_y ′))=−((4xy+4y^2 −2)/(2x^2 +1+4x))∣_((0,3)) =−((4(3)^2 −2)/1)=−34

$${f}\left({x},{y}\right)=\mathrm{2}{x}^{\mathrm{2}} {y}+{y}+\mathrm{4}{xy}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}=\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}=−\frac{{f}_{{x}} '}{{f}_{{y}} '}=−\frac{\mathrm{4}{xy}+\mathrm{4}{y}^{\mathrm{2}} −\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}+\mathrm{4}{x}}\mid_{\left(\mathrm{0},\mathrm{3}\right)} =−\frac{\mathrm{4}\left(\mathrm{3}\right)^{\mathrm{2}} −\mathrm{2}}{\mathrm{1}}=−\mathrm{34} \\ $$

Commented by MJS last updated on 27/Sep/19

implicit differentiation  ((d/dx)[f(x, y)])dx=−((d/dy)[f(x, y)])dy  on the l.h.s treat y as a constant  on the r.h.s treat x as a constant  ⇒ it′s easy to calculate (dx/dy) and (dy/dx)  at the end put x=0, y=3  in this case  f(x, y)=2x^2 y+4xy^2 +y−2x−3  I think now you can do it

$$\mathrm{implicit}\:\mathrm{differentiation} \\ $$$$\left(\frac{{d}}{{dx}}\left[{f}\left({x},\:{y}\right)\right]\right){dx}=−\left(\frac{{d}}{{dy}}\left[{f}\left({x},\:{y}\right)\right]\right){dy} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{l}.\mathrm{h}.\mathrm{s}\:\mathrm{treat}\:{y}\:\mathrm{as}\:\mathrm{a}\:\mathrm{constant} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{r}.\mathrm{h}.\mathrm{s}\:\mathrm{treat}\:{x}\:\mathrm{as}\:\mathrm{a}\:\mathrm{constant} \\ $$$$\Rightarrow\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{calculate}\:\frac{{dx}}{{dy}}\:\mathrm{and}\:\frac{{dy}}{{dx}} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{end}\:\mathrm{put}\:{x}=\mathrm{0},\:{y}=\mathrm{3} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case} \\ $$$${f}\left({x},\:{y}\right)=\mathrm{2}{x}^{\mathrm{2}} {y}+\mathrm{4}{xy}^{\mathrm{2}} +{y}−\mathrm{2}{x}−\mathrm{3} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{now}\:\mathrm{you}\:\mathrm{can}\:\mathrm{do}\:\mathrm{it} \\ $$

Commented by Rio Michael last updated on 27/Sep/19

sure sir    4xy + 2x^2 (dy/dx) + 4y^2  + 8xy(dy/dx) + (dy/dx) = 2   2x^2 (dy/dx) + 8xy(dy/dx) + (dy/dx) = 2 −4xy − 4y^2   (dy/dx)(2x^2  + 8xy + 1) = 2(1 − 2xy −2)  (dy/dx) = ((2(1 −2xy−2))/(2x^2 +8xy + 1))  x =0 and y = 3  (dy/dx) = ((2(1−2))/1) = −2  is that correct?

$${sure}\:{sir}\: \\ $$$$\:\mathrm{4}{xy}\:+\:\mathrm{2}{x}^{\mathrm{2}} \frac{{dy}}{{dx}}\:+\:\mathrm{4}{y}^{\mathrm{2}} \:+\:\mathrm{8}{xy}\frac{{dy}}{{dx}}\:+\:\frac{{dy}}{{dx}}\:=\:\mathrm{2}\: \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \frac{{dy}}{{dx}}\:+\:\mathrm{8}{xy}\frac{{dy}}{{dx}}\:+\:\frac{{dy}}{{dx}}\:=\:\mathrm{2}\:−\mathrm{4}{xy}\:−\:\mathrm{4}{y}^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}\left(\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{8}{xy}\:+\:\mathrm{1}\right)\:=\:\mathrm{2}\left(\mathrm{1}\:−\:\mathrm{2}{xy}\:−\mathrm{2}\right) \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}\left(\mathrm{1}\:−\mathrm{2}{xy}−\mathrm{2}\right)}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{xy}\:+\:\mathrm{1}} \\ $$$${x}\:=\mathrm{0}\:{and}\:{y}\:=\:\mathrm{3} \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2}\right)}{\mathrm{1}}\:=\:−\mathrm{2}\:\:{is}\:{that}\:{correct}? \\ $$

Commented by MJS last updated on 27/Sep/19

(d/dx)[2x^2 y+4xy^2 +y−2x−3]=4xy+4y^2 −2  (d/dy)[2x^2 y+4xy^2 +y−2x−3]=2x^2 +8xy+1  (4xy+4y^2 −2)dx=−(2x^2 +8xy+1)dy  (dy/dx)=−((4xy+4y^2 −2)/(2x^2 +8xy+1))  x=0∧y=3 ⇒ (dy/dx)=−((34)/1)=−34

$$\frac{{d}}{{dx}}\left[\mathrm{2}{x}^{\mathrm{2}} {y}+\mathrm{4}{xy}^{\mathrm{2}} +{y}−\mathrm{2}{x}−\mathrm{3}\right]=\mathrm{4}{xy}+\mathrm{4}{y}^{\mathrm{2}} −\mathrm{2} \\ $$$$\frac{{d}}{{dy}}\left[\mathrm{2}{x}^{\mathrm{2}} {y}+\mathrm{4}{xy}^{\mathrm{2}} +{y}−\mathrm{2}{x}−\mathrm{3}\right]=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{xy}+\mathrm{1} \\ $$$$\left(\mathrm{4}{xy}+\mathrm{4}{y}^{\mathrm{2}} −\mathrm{2}\right){dx}=−\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{xy}+\mathrm{1}\right){dy} \\ $$$$\frac{{dy}}{{dx}}=−\frac{\mathrm{4}{xy}+\mathrm{4}{y}^{\mathrm{2}} −\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{xy}+\mathrm{1}} \\ $$$${x}=\mathrm{0}\wedge{y}=\mathrm{3}\:\Rightarrow\:\frac{{dy}}{{dx}}=−\frac{\mathrm{34}}{\mathrm{1}}=−\mathrm{34} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com