Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 69794 by mathmax by abdo last updated on 27/Sep/19

let p(x)=(x+1)^6  −e^(iα)     with α real  1) find the roots of p(x)  2) factorize p(x)inside C[x]  3)factorize p(x)inside R[x]

$${let}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{6}} \:−{e}^{{i}\alpha} \:\:\:\:{with}\:\alpha\:{real} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right){inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){factorize}\:{p}\left({x}\right){inside}\:{R}\left[{x}\right] \\ $$

Commented by mathmax by abdo last updated on 01/Oct/19

1)p(x)=0 ⇔(x+1)^6 =e^(iα)  ⇔(((x+1)^6 )/e^(iα) ) =1 ⇔(((x+1)^6 )/((e^((iα)/6) )^6 )) =1 ⇒  ((x+1)e^(−((iα)/6)) )^6  =e^(i2kπ)  ⇒(x+1)e^(−((iα)/6))  =e^((i2kπ)/6)  ⇒  (x+1)=e^((ikπ)/3)  e^((iα)/6)  ⇒x+1 =e^((i(2kπ +α))/6)  ⇒x=e^(i(((2kπ+α))/6)) −1  so the roots of p(x) are z_k =e^(i(((2kπ+α)/6))) −1  with k∈[[0,5]]  2) p(x) =aΠ_(k=0) ^5 (x−z_k )   we see that a=1 ⇒  p(x) =Π_(k=0) ^5 (x+1−e^(i(((3kπ+α)/6))) )

$$\left.\mathrm{1}\right){p}\left({x}\right)=\mathrm{0}\:\Leftrightarrow\left({x}+\mathrm{1}\right)^{\mathrm{6}} ={e}^{{i}\alpha} \:\Leftrightarrow\frac{\left({x}+\mathrm{1}\right)^{\mathrm{6}} }{{e}^{{i}\alpha} }\:=\mathrm{1}\:\Leftrightarrow\frac{\left({x}+\mathrm{1}\right)^{\mathrm{6}} }{\left({e}^{\frac{{i}\alpha}{\mathrm{6}}} \right)^{\mathrm{6}} }\:=\mathrm{1}\:\Rightarrow \\ $$$$\left(\left({x}+\mathrm{1}\right){e}^{−\frac{{i}\alpha}{\mathrm{6}}} \right)^{\mathrm{6}} \:={e}^{{i}\mathrm{2}{k}\pi} \:\Rightarrow\left({x}+\mathrm{1}\right){e}^{−\frac{{i}\alpha}{\mathrm{6}}} \:={e}^{\frac{{i}\mathrm{2}{k}\pi}{\mathrm{6}}} \:\Rightarrow \\ $$$$\left({x}+\mathrm{1}\right)={e}^{\frac{{ik}\pi}{\mathrm{3}}} \:{e}^{\frac{{i}\alpha}{\mathrm{6}}} \:\Rightarrow{x}+\mathrm{1}\:={e}^{\frac{{i}\left(\mathrm{2}{k}\pi\:+\alpha\right)}{\mathrm{6}}} \:\Rightarrow{x}={e}^{{i}\left(\frac{\left.\mathrm{2}{k}\pi+\alpha\right)}{\mathrm{6}}\right.} −\mathrm{1} \\ $$$${so}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{are}\:{z}_{{k}} ={e}^{{i}\left(\frac{\mathrm{2}{k}\pi+\alpha}{\mathrm{6}}\right)} −\mathrm{1}\:\:{with}\:{k}\in\left[\left[\mathrm{0},\mathrm{5}\right]\right] \\ $$$$\left.\mathrm{2}\right)\:{p}\left({x}\right)\:={a}\prod_{{k}=\mathrm{0}} ^{\mathrm{5}} \left({x}−{z}_{{k}} \right)\:\:\:{we}\:{see}\:{that}\:{a}=\mathrm{1}\:\Rightarrow \\ $$$${p}\left({x}\right)\:=\prod_{{k}=\mathrm{0}} ^{\mathrm{5}} \left({x}+\mathrm{1}−{e}^{{i}\left(\frac{\mathrm{3}{k}\pi+\alpha}{\mathrm{6}}\right)} \right) \\ $$

Commented by mathmax by abdo last updated on 01/Oct/19

error of typo    p(x)=Π_(k=0) ^5 (x+1−e^(i(((2kπ+α)/6))) )

$${error}\:{of}\:{typo}\:\:\:\:{p}\left({x}\right)=\prod_{{k}=\mathrm{0}} ^{\mathrm{5}} \left({x}+\mathrm{1}−{e}^{{i}\left(\frac{\mathrm{2}{k}\pi+\alpha}{\mathrm{6}}\right)} \right) \\ $$

Answered by mind is power last updated on 29/Sep/19

p(x)=0⇒  (x+1)^6 =e^(ia) ⇔(x+1)^6 =e^(i(a+2kπ))   ⇒x+1=e^(i(a+2kπ)/6) ,k∈[0,5]  ⇒x_k =−1+e^(i((a+2kπ)/6))   2 )p(x)=Π_(k=0) ^5 (x−(−1+e^(i((a+2kπ)/6)) ))  p(x)=Π_(k=0) ^5 (x+1−e^(i((a+2kπ)/6)) )  over IR not possible only[if e^(ia) ∈IR⇒a=kπ  cause p(−1)=−e^(ia)

$${p}\left({x}\right)=\mathrm{0}\Rightarrow \\ $$$$\left({x}+\mathrm{1}\right)^{\mathrm{6}} ={e}^{{ia}} \Leftrightarrow\left({x}+\mathrm{1}\right)^{\mathrm{6}} ={e}^{{i}\left({a}+\mathrm{2}{k}\pi\right)} \\ $$$$\Rightarrow{x}+\mathrm{1}={e}^{{i}\left({a}+\mathrm{2}{k}\pi\right)/\mathrm{6}} ,{k}\in\left[\mathrm{0},\mathrm{5}\right] \\ $$$$\Rightarrow{x}_{{k}} =−\mathrm{1}+{e}^{{i}\frac{{a}+\mathrm{2}{k}\pi}{\mathrm{6}}} \\ $$$$\left.\mathrm{2}\:\right){p}\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{\mathrm{5}} {\prod}}\left({x}−\left(−\mathrm{1}+{e}^{{i}\frac{{a}+\mathrm{2}{k}\pi}{\mathrm{6}}} \right)\right) \\ $$$${p}\left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{\mathrm{5}} {\prod}}\left({x}+\mathrm{1}−{e}^{{i}\frac{{a}+\mathrm{2}{k}\pi}{\mathrm{6}}} \right) \\ $$$${over}\:{IR}\:{not}\:{possible}\:{only}\left[{if}\:{e}^{{ia}} \in{IR}\Rightarrow{a}={k}\pi\right. \\ $$$${cause}\:{p}\left(−\mathrm{1}\right)=−{e}^{{ia}} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com