Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 6990 by Tawakalitu. last updated on 04/Aug/16

Answered by sou1618 last updated on 05/Aug/16

L=lim_(x→∞) (x)^(1/x)   ln(L)=lim_(x→∞)  (1/x)ln(x)  when 0<x      0<(1/x),  and when 4<x      0<ln(x)<(√x)  ∗detail  ∗set f(x)=(√x)−ln(x)  ∗f′(x)=(1/(2(√x)))−(1/x)=(((√x)−2)/(2x))  ∗when 4<x  ∗   f′(x)>0,f(4)>0  ∗∴0<ln(x)<(√x)   (4<x)    so  (0/x)<((ln(x))/x)<((√x)/x)  lim_(x→∞) (0/x)<lim_(x→∞) ((ln(x))/x)<lim_(x→∞) ((√x)/x)  0<lim_(x→∞) ((ln(x))/x)<0  ∴ln(L)=0  ∴L=1

$${L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left({x}\right)^{\mathrm{1}/{x}} \\ $$$${ln}\left({L}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}}{ln}\left({x}\right) \\ $$$${when}\:\mathrm{0}<{x} \\ $$$$\:\:\:\:\mathrm{0}<\frac{\mathrm{1}}{{x}}, \\ $$$${and}\:{when}\:\mathrm{4}<{x} \\ $$$$\:\:\:\:\mathrm{0}<{ln}\left({x}\right)<\sqrt{{x}} \\ $$$$\ast{detail} \\ $$$$\ast{set}\:{f}\left({x}\right)=\sqrt{{x}}−{ln}\left({x}\right) \\ $$$$\ast{f}'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}−\frac{\mathrm{1}}{{x}}=\frac{\sqrt{{x}}−\mathrm{2}}{\mathrm{2}{x}} \\ $$$$\ast{when}\:\mathrm{4}<{x} \\ $$$$\ast\:\:\:{f}'\left({x}\right)>\mathrm{0},{f}\left(\mathrm{4}\right)>\mathrm{0} \\ $$$$\ast\therefore\mathrm{0}<{ln}\left({x}\right)<\sqrt{{x}}\:\:\:\left(\mathrm{4}<{x}\right) \\ $$$$ \\ $$$${so} \\ $$$$\frac{\mathrm{0}}{{x}}<\frac{{ln}\left({x}\right)}{{x}}<\frac{\sqrt{{x}}}{{x}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{0}}{{x}}<\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{ln}\left({x}\right)}{{x}}<\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt{{x}}}{{x}} \\ $$$$\mathrm{0}<\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{ln}\left({x}\right)}{{x}}<\mathrm{0} \\ $$$$\therefore{ln}\left({L}\right)=\mathrm{0} \\ $$$$\therefore{L}=\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 05/Aug/16

I really appreciate.

$${I}\:{really}\:{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com