Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 6991 by Tawakalitu. last updated on 05/Aug/16

Solve:  (1 − x^2 ) (dy/dx) + xy = xp

$${Solve}:\:\:\left(\mathrm{1}\:−\:{x}^{\mathrm{2}} \right)\:\frac{{dy}}{{dx}}\:+\:{xy}\:=\:{xp} \\ $$$$ \\ $$$$ \\ $$

Answered by Yozzii last updated on 05/Aug/16

x≠1: y′+(x/(1−x^2 ))y=((xp)/(1−x^2 ))  φ(x)=∫(x/(1−x^2 ))dx=∫((−2x)/((−2)(1−x^2 )))dx=((−1)/2)∫(((d/dx)(1−x^2 ))/(1−x^2 ))dx  φ(x)=((−1)/2)ln(1−x^2 )=ln(1/(√(1−x^2 )))  ⇒e^(φ(x)) =(1/(√(1−x^2 )))=integrating factor  ∴ e^(φ(x)) y=∫((xp)/(1−x^2 ))e^(φ(x)) dx  (y/(√(1−x^2 )))=∫((xp)/(1−x^2 ))×(1/(√(1−x^2 )))dx  (y/(√(1−x^2 )))=∫((xp)/((1−x^2 )^(3/2) ))dx  Let x=sinθ⇒dx=cosθdθ  ∴∫((xp)/((1−x^2 )^(3/2) ))dx=∫((psinθ×cosθ)/((1−sin^2 θ)^(3/2) ))dθ  =∫((psinθcosθ)/(cos^3 θ))dθ=∫((psinθ)/(cos^2 θ))dθ  =p∫tanθsecθdθ=psecθ+C  sinθ=x⇒cosθ=(√(1−x^2 ))⇒secθ=(1/(√(1−x^2 )))  ∴(y/(√(1−x^2 )))=(p/(√(1−x^2 )))+C  ⇒y=p+C(√(1−x^2 ))  −−−−−−−−−−−−−−−−−−−−−−−  Checking:  y′=((−Cx)/(√(1−x^2 )))  y′(1−x^2 )=−Cx(√(1−x^2 ))  y^′ (1−x^2 )+xy=x(p+C(√(1−x^2 )))−Cx(√(1−x^2 ))  y′(1−x^2 )+xy=xp+Cx(√(1−x^2 ))−Cx(√(1−x^2 ))  y′(1−x^2 )+xy=xp

$${x}\neq\mathrm{1}:\:{y}'+\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }{y}=\frac{{xp}}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\phi\left({x}\right)=\int\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=\int\frac{−\mathrm{2}{x}}{\left(−\mathrm{2}\right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{dx}=\frac{−\mathrm{1}}{\mathrm{2}}\int\frac{\frac{{d}}{{dx}}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$\phi\left({x}\right)=\frac{−\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)={ln}\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\Rightarrow{e}^{\phi\left({x}\right)} =\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}={integrating}\:{factor} \\ $$$$\therefore\:{e}^{\phi\left({x}\right)} {y}=\int\frac{{xp}}{\mathrm{1}−{x}^{\mathrm{2}} }{e}^{\phi\left({x}\right)} {dx} \\ $$$$\frac{{y}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\int\frac{{xp}}{\mathrm{1}−{x}^{\mathrm{2}} }×\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\frac{{y}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\int\frac{{xp}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }{dx} \\ $$$${Let}\:{x}={sin}\theta\Rightarrow{dx}={cos}\theta{d}\theta \\ $$$$\therefore\int\frac{{xp}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }{dx}=\int\frac{{psin}\theta×{cos}\theta}{\left(\mathrm{1}−{sin}^{\mathrm{2}} \theta\right)^{\mathrm{3}/\mathrm{2}} }{d}\theta \\ $$$$=\int\frac{{psin}\theta{cos}\theta}{{cos}^{\mathrm{3}} \theta}{d}\theta=\int\frac{{psin}\theta}{{cos}^{\mathrm{2}} \theta}{d}\theta \\ $$$$={p}\int{tan}\theta{sec}\theta{d}\theta={psec}\theta+{C} \\ $$$${sin}\theta={x}\Rightarrow{cos}\theta=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\Rightarrow{sec}\theta=\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\therefore\frac{{y}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}=\frac{{p}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}+{C} \\ $$$$\Rightarrow{y}={p}+{C}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Checking}: \\ $$$${y}'=\frac{−{Cx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$${y}'\left(\mathrm{1}−{x}^{\mathrm{2}} \right)=−{Cx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${y}^{'} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)+{xy}={x}\left({p}+{C}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)−{Cx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${y}'\left(\mathrm{1}−{x}^{\mathrm{2}} \right)+{xy}={xp}+{Cx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−{Cx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${y}'\left(\mathrm{1}−{x}^{\mathrm{2}} \right)+{xy}={xp} \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 05/Aug/16

Great. thanks so much.

$${Great}.\:{thanks}\:{so}\:{much}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com