Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 70025 by Tony Lin last updated on 30/Sep/19

use ε-δ defintion to prove that  lim_(x→0) (((√(1+x))−(√(1−x)))/x)=1

$${use}\:\varepsilon-\delta\:{defintion}\:{to}\:{prove}\:{that} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{1}+{x}}−\sqrt{\mathrm{1}−{x}}}{{x}}=\mathrm{1} \\ $$

Commented by mind is power last updated on 01/Oct/19

=lim_(t→0) (((√(1+sin(t)))−(√(1−sin(t))))/(sin(t)))  =lim_ _(x→0) (1/(cos((t/2))))  ∀ε>0  ∃η>0  ∣x∣≤η⇒∣f(x)−1∣≤ε           1−ε≤(1/(cos((t/2))))≤1+ε  ⇒(1/(1−ε))≥cos((t/2))≥(1/(1+ε))  ⇒           (t/2)≤arcos((1/(1−ε)))  ⇒t≤2cos^(−1) ((1/(1−ε)))=η_ε

$$={li}\underset{{t}\rightarrow\mathrm{0}} {{m}}\frac{\sqrt{\mathrm{1}+{sin}\left({t}\right)}−\sqrt{\mathrm{1}−{sin}\left({t}\right)}}{{sin}\left({t}\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}_{} }\frac{\mathrm{1}}{{cos}\left(\frac{{t}}{\mathrm{2}}\right)} \\ $$$$\forall\varepsilon>\mathrm{0}\:\:\exists\eta>\mathrm{0} \\ $$$$\mid{x}\mid\leqslant\eta\Rightarrow\mid{f}\left({x}\right)−\mathrm{1}\mid\leqslant\varepsilon \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{1}−\varepsilon\leqslant\frac{\mathrm{1}}{{cos}\left(\frac{{t}}{\mathrm{2}}\right)}\leqslant\mathrm{1}+\varepsilon \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{1}−\varepsilon}\geqslant{cos}\left(\frac{{t}}{\mathrm{2}}\right)\geqslant\frac{\mathrm{1}}{\mathrm{1}+\varepsilon} \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:\:\:\:\frac{{t}}{\mathrm{2}}\leqslant{arcos}\left(\frac{\mathrm{1}}{\left.\mathrm{1}−\varepsilon\right)}\right. \\ $$$$\Rightarrow{t}\leqslant\mathrm{2cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}−\varepsilon}\right)=\eta_{\varepsilon} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com