Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 70040 by Shamim last updated on 30/Sep/19

If, a^2 b^2 c^2 ((1/a^3 )+(1/b^3 )+(1/c^3 ))=a^3 +b^3 +c^3  than  prove that a,b,c Successive Proportional.

$$\mathrm{If},\:\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{3}} }\right)=\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \:\mathrm{than} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{Successive}\:\mathrm{Proportional}. \\ $$

Commented by Prithwish sen last updated on 01/Oct/19

(((b^2 c^2 )/a)−a^3 )+(((a^2 c^2 )/b)−b^3 )+(((a^2 b^2 )/c) − c^3 )=0  ((b^2 c^2 −a^4 )/a) +((a^2 b^2 −c^4 )/c) +(((a^2 c^2 −b^4 )/c))=0  ((b^2 c^3 −a^4 c + a^3 b^2 −ac^4 )/(ac)) +((a^2 c^2  − b^4 )/c) = 0  (((b^2 −ac)(a^3 + c^3 ))/(ac)) − (((b^2 −ac)(b^2 +ac))/c) = 0  (b^2 −ac)(((a^3 +c^3 )/(ac)) − ((b^2 +ac)/c) )=0   considering only                                  b^2 −ac = 0  ⇒ a,b,c are in proportion.  proved

$$\left(\frac{\mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} }{\mathrm{a}}−\mathrm{a}^{\mathrm{3}} \right)+\left(\frac{\mathrm{a}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} }{\mathrm{b}}−\mathrm{b}^{\mathrm{3}} \right)+\left(\frac{\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} }{\mathrm{c}}\:−\:\mathrm{c}^{\mathrm{3}} \right)=\mathrm{0} \\ $$$$\frac{\mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{4}} }{\mathrm{a}}\:+\frac{\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{4}} }{\mathrm{c}}\:+\left(\frac{\mathrm{a}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{b}^{\mathrm{4}} }{\mathrm{c}}\right)=\mathrm{0} \\ $$$$\frac{\mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{3}} −\mathrm{a}^{\mathrm{4}} \mathrm{c}\:+\:\mathrm{a}^{\mathrm{3}} \mathrm{b}^{\mathrm{2}} −\mathrm{ac}^{\mathrm{4}} }{\mathrm{ac}}\:+\frac{\mathrm{a}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} \:−\:\mathrm{b}^{\mathrm{4}} }{\mathrm{c}}\:=\:\mathrm{0} \\ $$$$\frac{\left(\boldsymbol{\mathrm{b}}^{\mathrm{2}} −\boldsymbol{\mathrm{ac}}\right)\left(\mathrm{a}^{\mathrm{3}} +\:\mathrm{c}^{\mathrm{3}} \right)}{\mathrm{ac}}\:−\:\frac{\left(\boldsymbol{\mathrm{b}}^{\mathrm{2}} −\boldsymbol{\mathrm{ac}}\right)\left(\mathrm{b}^{\mathrm{2}} +\mathrm{ac}\right)}{\mathrm{c}}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{b}^{\mathrm{2}} −\mathrm{ac}\right)\left(\frac{\mathrm{a}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} }{\mathrm{ac}}\:−\:\frac{\mathrm{b}^{\mathrm{2}} +\mathrm{ac}}{\mathrm{c}}\:\right)=\mathrm{0} \\ $$$$\:\boldsymbol{\mathrm{considering}}\:\boldsymbol{\mathrm{only}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{b}}^{\mathrm{2}} −\boldsymbol{\mathrm{ac}}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{proportion}}.\:\:\boldsymbol{\mathrm{proved}} \\ $$

Commented by Shamim last updated on 01/Oct/19

tnks

$$\mathrm{tnks} \\ $$

Commented by MJS last updated on 01/Oct/19

of course this is right    I saw that the given equation can be  transformed to  a^4 bc+ab^4 c+abc^4 −a^3 b^3 −a^3 c^3 −b^3 c^3 =0 ⇔  ⇔ (a^2 −bc)(b^2 −ac)(c^2 −ab)=0  but I thought it′s not easy to factorize    on the other hand by taking the result and  simply putting b=pa, c=p^2 a or just c=(b^2 /a) we  easily find the given equation is true    but I thought showing that with b=pa and  c=qa ⇒ q=p^2  is more convincing

$$\mathrm{of}\:\mathrm{course}\:\mathrm{this}\:\mathrm{is}\:\mathrm{right} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{saw}\:\mathrm{that}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{transformed}\:\mathrm{to} \\ $$$${a}^{\mathrm{4}} {bc}+{ab}^{\mathrm{4}} {c}+{abc}^{\mathrm{4}} −{a}^{\mathrm{3}} {b}^{\mathrm{3}} −{a}^{\mathrm{3}} {c}^{\mathrm{3}} −{b}^{\mathrm{3}} {c}^{\mathrm{3}} =\mathrm{0}\:\Leftrightarrow \\ $$$$\Leftrightarrow\:\left({a}^{\mathrm{2}} −{bc}\right)\left({b}^{\mathrm{2}} −{ac}\right)\left({c}^{\mathrm{2}} −{ab}\right)=\mathrm{0} \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{thought}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{factorize} \\ $$$$ \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hand}\:\mathrm{by}\:\mathrm{taking}\:\mathrm{the}\:\mathrm{result}\:\mathrm{and} \\ $$$$\mathrm{simply}\:\mathrm{putting}\:{b}={pa},\:{c}={p}^{\mathrm{2}} {a}\:\mathrm{or}\:\mathrm{just}\:{c}=\frac{{b}^{\mathrm{2}} }{{a}}\:\mathrm{we} \\ $$$$\mathrm{easily}\:\mathrm{find}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{true} \\ $$$$ \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{thought}\:\mathrm{showing}\:\mathrm{that}\:\mathrm{with}\:{b}={pa}\:\mathrm{and} \\ $$$${c}={qa}\:\Rightarrow\:{q}={p}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{more}\:\mathrm{convincing} \\ $$

Answered by MJS last updated on 30/Sep/19

for a, b, c ∈R we can find p, q ∈R ⇒ b=pa∧c=qa    a^2 b^2 c^2 ((1/a^3 )+(1/b^3 )+(1/c^3 ))=a^3 +b^3 +c^3   a^3 b^3 +a^3 c^3 +b^3 c^3 =a^4 bc+ab^4 c+abc^4   a^4 bc−a^3 (b^3 −c^3 )+a(b^4 c+bc^4 )−b^3 c^3 =0  b=pa∧c=qa, let a≤b≤c ⇒ 1≤p≤q  a^6 (−p^3 q^3 +p^4 q+pq^4 −p^3 −q^3 +pq)=0  a≠0  −p^3 q^3 +p^4 q+pq^4 −p^3 −q^3 +pq=0  (p^2 −q)(p−q^2 )(pq−1)=0  ⇒ q=p^2   [∨q=±(√p)∨q=(1/p)]  ⇒ ⟨a, b, c⟩=⟨a, pa, p^2 a⟩

$$\mathrm{for}\:{a},\:{b},\:{c}\:\in\mathbb{R}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:{p},\:{q}\:\in\mathbb{R}\:\Rightarrow\:{b}={pa}\wedge{c}={qa} \\ $$$$ \\ $$$${a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{a}^{\mathrm{3}} }+\frac{\mathrm{1}}{{b}^{\mathrm{3}} }+\frac{\mathrm{1}}{{c}^{\mathrm{3}} }\right)={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \\ $$$${a}^{\mathrm{3}} {b}^{\mathrm{3}} +{a}^{\mathrm{3}} {c}^{\mathrm{3}} +{b}^{\mathrm{3}} {c}^{\mathrm{3}} ={a}^{\mathrm{4}} {bc}+{ab}^{\mathrm{4}} {c}+{abc}^{\mathrm{4}} \\ $$$${a}^{\mathrm{4}} {bc}−{a}^{\mathrm{3}} \left({b}^{\mathrm{3}} −{c}^{\mathrm{3}} \right)+{a}\left({b}^{\mathrm{4}} {c}+{bc}^{\mathrm{4}} \right)−{b}^{\mathrm{3}} {c}^{\mathrm{3}} =\mathrm{0} \\ $$$${b}={pa}\wedge{c}={qa},\:\mathrm{let}\:{a}\leqslant{b}\leqslant{c}\:\Rightarrow\:\mathrm{1}\leqslant{p}\leqslant{q} \\ $$$${a}^{\mathrm{6}} \left(−{p}^{\mathrm{3}} {q}^{\mathrm{3}} +{p}^{\mathrm{4}} {q}+{pq}^{\mathrm{4}} −{p}^{\mathrm{3}} −{q}^{\mathrm{3}} +{pq}\right)=\mathrm{0} \\ $$$${a}\neq\mathrm{0} \\ $$$$−{p}^{\mathrm{3}} {q}^{\mathrm{3}} +{p}^{\mathrm{4}} {q}+{pq}^{\mathrm{4}} −{p}^{\mathrm{3}} −{q}^{\mathrm{3}} +{pq}=\mathrm{0} \\ $$$$\left({p}^{\mathrm{2}} −{q}\right)\left({p}−{q}^{\mathrm{2}} \right)\left({pq}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{q}={p}^{\mathrm{2}} \:\:\left[\vee{q}=\pm\sqrt{{p}}\vee{q}=\frac{\mathrm{1}}{{p}}\right] \\ $$$$\Rightarrow\:\langle{a},\:{b},\:{c}\rangle=\langle{a},\:{pa},\:{p}^{\mathrm{2}} {a}\rangle \\ $$

Commented by Shamim last updated on 30/Sep/19

It′s very hard. others rule???

$$\mathrm{It}'\mathrm{s}\:\mathrm{very}\:\mathrm{hard}.\:\mathrm{others}\:\mathrm{rule}??? \\ $$

Commented by MJS last updated on 30/Sep/19

it′s not that hard. write  −p^3 q^3 +p^4 q+pq^4 −p^3 −q^3 +pq=0  as  pq^4 −(p^3 +1)q^3 +p(p^3 +1)q−p^3 =0  divide by p  q^4 −((p^3 +1)/p)q^3 +(p^3 +1)q−p^2 =0  we know if there′s an easy solution q_1  ⇒  q_1 ∣p^2  ⇒ we have to try ±1, ±p, ±p^2   ⇒ q_1 =p^2  and this is enough because we  set a≤b≤c ⇒ 1≤p≤q ⇒ q≠±(√p)∧q≠(1/p)    we then have  (q−p^2 )(q^3 −(1/p)q^2 −pq+1)=0  transform to  (q−p^2 )(q^2 (q−(1/p))−p(q−(1/p)))=0  ⇒ q_2 =(1/p)  (q−p^2 )(q−(1/p))(q^2 −p)=0  ⇒ q_(3, 4) =±(√p)

$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{that}\:\mathrm{hard}.\:\mathrm{write} \\ $$$$−{p}^{\mathrm{3}} {q}^{\mathrm{3}} +{p}^{\mathrm{4}} {q}+{pq}^{\mathrm{4}} −{p}^{\mathrm{3}} −{q}^{\mathrm{3}} +{pq}=\mathrm{0} \\ $$$$\mathrm{as} \\ $$$${pq}^{\mathrm{4}} −\left({p}^{\mathrm{3}} +\mathrm{1}\right){q}^{\mathrm{3}} +{p}\left({p}^{\mathrm{3}} +\mathrm{1}\right){q}−{p}^{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{divide}\:\mathrm{by}\:{p} \\ $$$${q}^{\mathrm{4}} −\frac{{p}^{\mathrm{3}} +\mathrm{1}}{{p}}{q}^{\mathrm{3}} +\left({p}^{\mathrm{3}} +\mathrm{1}\right){q}−{p}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{know}\:\mathrm{if}\:\mathrm{there}'\mathrm{s}\:\mathrm{an}\:\mathrm{easy}\:\mathrm{solution}\:{q}_{\mathrm{1}} \:\Rightarrow \\ $$$${q}_{\mathrm{1}} \mid{p}^{\mathrm{2}} \:\Rightarrow\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{try}\:\pm\mathrm{1},\:\pm{p},\:\pm{p}^{\mathrm{2}} \\ $$$$\Rightarrow\:{q}_{\mathrm{1}} ={p}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{this}\:\mathrm{is}\:\mathrm{enough}\:\mathrm{because}\:\mathrm{we} \\ $$$$\mathrm{set}\:{a}\leqslant{b}\leqslant{c}\:\Rightarrow\:\mathrm{1}\leqslant{p}\leqslant{q}\:\Rightarrow\:{q}\neq\pm\sqrt{{p}}\wedge{q}\neq\frac{\mathrm{1}}{{p}} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{then}\:\mathrm{have} \\ $$$$\left({q}−{p}^{\mathrm{2}} \right)\left({q}^{\mathrm{3}} −\frac{\mathrm{1}}{{p}}{q}^{\mathrm{2}} −{pq}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{transform}\:\mathrm{to} \\ $$$$\left({q}−{p}^{\mathrm{2}} \right)\left({q}^{\mathrm{2}} \left({q}−\frac{\mathrm{1}}{{p}}\right)−{p}\left({q}−\frac{\mathrm{1}}{{p}}\right)\right)=\mathrm{0} \\ $$$$\Rightarrow\:{q}_{\mathrm{2}} =\frac{\mathrm{1}}{{p}} \\ $$$$\left({q}−{p}^{\mathrm{2}} \right)\left({q}−\frac{\mathrm{1}}{{p}}\right)\left({q}^{\mathrm{2}} −{p}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{q}_{\mathrm{3},\:\mathrm{4}} =\pm\sqrt{{p}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com