Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 70159 by ajfour last updated on 01/Oct/19

Commented by ajfour last updated on 01/Oct/19

Under balanced conditions, find  θ . All surfaces frictionless.

$${Under}\:{balanced}\:{conditions},\:{find} \\ $$$$\theta\:.\:{All}\:{surfaces}\:{frictionless}. \\ $$

Answered by mr W last updated on 01/Oct/19

Commented by mr W last updated on 01/Oct/19

let L=length of rods  (N_1 −((Mg)/2))L sin (θ/2)=amg   ...(i)  (N_2 −((Mg)/2))L sin (θ/2)=2bmg sin α   ...(ii)  (ii)/(i):  ((N_2 −((Mg)/2))/(N_1 −((Mg)/2)))=((2bsin α)/a)=2  2N_2 −Mg=2(2N_1 −Mg)  ⇒2N_2 =4N_1 −Mg  N_1 =Mg+((L−b)/(2L))mg  N_2 =Mg+((L+b)/(2L))mg  2Mg+((2(L+b))/(2L))mg=4Mg+((4(L−b))/(2L))mg−Mg  ⇒(b/L)=(1/3)((M/m)+2)  from (i):  (Mg+((L−b)/(2L))mg−((Mg)/2))L sin (θ/2)=mgb cos θ  ((M/m)+1−(b/L))sin (θ/2)=2 cos θ (b/L)  ((2M+m)/(2(M+2m)))sin (θ/2)=1−2 sin^2  (θ/2)   2 sin^2  (θ/2)+μ sin (θ/2)−1=0  ⇒sin (θ/2)=(((√(μ^2 +8))−1)/4)  ⇒θ=2 sin^(−1) (((√(μ^2 +8))−1)/4)  with μ=((2M+m)/(2(M+2m)))

$${let}\:{L}={length}\:{of}\:{rods} \\ $$$$\left({N}_{\mathrm{1}} −\frac{{Mg}}{\mathrm{2}}\right){L}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}={amg}\:\:\:...\left({i}\right) \\ $$$$\left({N}_{\mathrm{2}} −\frac{{Mg}}{\mathrm{2}}\right){L}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{2}{bmg}\:\mathrm{sin}\:\alpha\:\:\:...\left({ii}\right) \\ $$$$\left({ii}\right)/\left({i}\right): \\ $$$$\frac{{N}_{\mathrm{2}} −\frac{{Mg}}{\mathrm{2}}}{{N}_{\mathrm{1}} −\frac{{Mg}}{\mathrm{2}}}=\frac{\mathrm{2}{b}\mathrm{sin}\:\alpha}{{a}}=\mathrm{2} \\ $$$$\mathrm{2}{N}_{\mathrm{2}} −{Mg}=\mathrm{2}\left(\mathrm{2}{N}_{\mathrm{1}} −{Mg}\right) \\ $$$$\Rightarrow\mathrm{2}{N}_{\mathrm{2}} =\mathrm{4}{N}_{\mathrm{1}} −{Mg} \\ $$$${N}_{\mathrm{1}} ={Mg}+\frac{{L}−{b}}{\mathrm{2}{L}}{mg} \\ $$$${N}_{\mathrm{2}} ={Mg}+\frac{{L}+{b}}{\mathrm{2}{L}}{mg} \\ $$$$\mathrm{2}{Mg}+\frac{\mathrm{2}\left({L}+{b}\right)}{\mathrm{2}{L}}{mg}=\mathrm{4}{Mg}+\frac{\mathrm{4}\left({L}−{b}\right)}{\mathrm{2}{L}}{mg}−{Mg} \\ $$$$\Rightarrow\frac{{b}}{{L}}=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{M}}{{m}}+\mathrm{2}\right) \\ $$$${from}\:\left({i}\right): \\ $$$$\left({Mg}+\frac{{L}−{b}}{\mathrm{2}{L}}{mg}−\frac{{Mg}}{\mathrm{2}}\right){L}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}={mgb}\:\mathrm{cos}\:\theta \\ $$$$\left(\frac{{M}}{{m}}+\mathrm{1}−\frac{{b}}{{L}}\right)\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{2}\:\mathrm{cos}\:\theta\:\frac{{b}}{{L}} \\ $$$$\frac{\mathrm{2}{M}+{m}}{\mathrm{2}\left({M}+\mathrm{2}{m}\right)}\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\: \\ $$$$\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}+\mu\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{\sqrt{\mu^{\mathrm{2}} +\mathrm{8}}−\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow\theta=\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mu^{\mathrm{2}} +\mathrm{8}}−\mathrm{1}}{\mathrm{4}} \\ $$$${with}\:\mu=\frac{\mathrm{2}{M}+{m}}{\mathrm{2}\left({M}+\mathrm{2}{m}\right)} \\ $$

Commented by ajfour last updated on 01/Oct/19

looks right sir, let me check  in detail in some while, thanks!

$${looks}\:{right}\:{sir},\:{let}\:{me}\:{check} \\ $$$${in}\:{detail}\:{in}\:{some}\:{while},\:{thanks}! \\ $$

Commented by ajfour last updated on 02/Oct/19

N_1 =Mg+((L−b)/(2L))mg  N_2 =Mg+((L+b)/(2L))mg  Sir please explain above two eqs.

$${N}_{\mathrm{1}} ={Mg}+\frac{{L}−{b}}{\mathrm{2}{L}}{mg} \\ $$$${N}_{\mathrm{2}} ={Mg}+\frac{{L}+{b}}{\mathrm{2}{L}}{mg} \\ $$$${Sir}\:{please}\:{explain}\:{above}\:{two}\:{eqs}. \\ $$

Commented by mr W last updated on 02/Oct/19

the weight of the two rods is equally  distributed between N_1 and N_2 , that′s  clear.  the weight mg will be distributed   unequally in this way:  N_1 ×2L sin (θ/2)=mg×(L−b) sin (θ/2)  ⇒N_1 =((L−b)/(2L)) mg  N_2 ×2L sin (θ/2)=mg×(L+b) sin (θ/2)  ⇒N_2 =((L+b)/(2L)) mg  therefore:  ⇒N_1 =Mg+((L−b)/(2L)) mg  ⇒N_2 =Mg+((L+b)/(2L)) mg

$${the}\:{weight}\:{of}\:{the}\:{two}\:{rods}\:{is}\:{equally} \\ $$$${distributed}\:{between}\:{N}_{\mathrm{1}} {and}\:{N}_{\mathrm{2}} ,\:{that}'{s} \\ $$$${clear}. \\ $$$${the}\:{weight}\:{mg}\:{will}\:{be}\:{distributed}\: \\ $$$${unequally}\:{in}\:{this}\:{way}: \\ $$$${N}_{\mathrm{1}} ×\mathrm{2}{L}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}={mg}×\left({L}−{b}\right)\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow{N}_{\mathrm{1}} =\frac{{L}−{b}}{\mathrm{2}{L}}\:{mg} \\ $$$${N}_{\mathrm{2}} ×\mathrm{2}{L}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}={mg}×\left({L}+{b}\right)\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow{N}_{\mathrm{2}} =\frac{{L}+{b}}{\mathrm{2}{L}}\:{mg} \\ $$$${therefore}: \\ $$$$\Rightarrow{N}_{\mathrm{1}} ={Mg}+\frac{{L}−{b}}{\mathrm{2}{L}}\:{mg} \\ $$$$\Rightarrow{N}_{\mathrm{2}} ={Mg}+\frac{{L}+{b}}{\mathrm{2}{L}}\:{mg} \\ $$

Commented by mr W last updated on 02/Oct/19

sir, can you check the question again:  i think the system can not be  in equilibrium.  to keep the equilibrium it must be  θ=2 sin^(−1) (((√(μ^2 +8))−1)/4)  but on the other side it must be  α=90°−θ=(θ/2) ⇒θ=60°

$${sir},\:{can}\:{you}\:{check}\:{the}\:{question}\:{again}: \\ $$$${i}\:{think}\:{the}\:{system}\:{can}\:{not}\:{be} \\ $$$${in}\:{equilibrium}. \\ $$$${to}\:{keep}\:{the}\:{equilibrium}\:{it}\:{must}\:{be} \\ $$$$\theta=\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mu^{\mathrm{2}} +\mathrm{8}}−\mathrm{1}}{\mathrm{4}} \\ $$$${but}\:{on}\:{the}\:{other}\:{side}\:{it}\:{must}\:{be} \\ $$$$\alpha=\mathrm{90}°−\theta=\frac{\theta}{\mathrm{2}}\:\Rightarrow\theta=\mathrm{60}° \\ $$

Commented by mr W last updated on 03/Oct/19

Commented by ajfour last updated on 04/Oct/19

2Mg+((2(L+b))/(2L))mg=4Mg+((4(L−b))/(2L))mg−Mg  Sir explain how you form this  eq.   and it might not lead to         (b/L)=(1/3)((M/m)+2)  ....

$$\mathrm{2}{Mg}+\frac{\mathrm{2}\left({L}+{b}\right)}{\mathrm{2}{L}}{mg}=\mathrm{4}{Mg}+\frac{\mathrm{4}\left({L}−{b}\right)}{\mathrm{2}{L}}{mg}−{Mg} \\ $$$${Sir}\:{explain}\:{how}\:{you}\:{form}\:{this} \\ $$$${eq}.\:\:\:{and}\:{it}\:{might}\:{not}\:{lead}\:{to} \\ $$$$\:\:\:\:\:\:\:\frac{{b}}{{L}}=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{M}}{{m}}+\mathrm{2}\right) \\ $$$$.... \\ $$

Commented by mr W last updated on 04/Oct/19

(N_1 −((Mg)/2))L sin (θ/2)=mga  (N_2 −((Mg)/2))L sin (θ/2)=2mgb sin α=2mga  ⇒N_2 −((Mg)/2)=2(N_1 −((Mg)/2))  ⇒N_2 =2N_1 −((Mg)/2)  N_1 =Mg+((L−b)/(2L))mg  N_2 =Mg+((L+b)/(2L))mg  ⇒Mg+((L+b)/(2L))mg=2Mg+((2(L−b))/(2L))mg−((Mg)/2)  ⇒((3b−L)/L)m=M  ⇒(b/L)=(1/3)((M/m)+1)  (N_1 −((Mg)/2))L sin (θ/2)=mgb cos θ  (((L−b)/(2L))+(M/(2m)))sin (θ/2)=(b/L) cos θ  (1−(b/L)+(M/m))sin (θ/2)=(2/3)((M/m)+1)(1−2 sin^2  (θ/2))  (1−(1/3)((M/m)+1)+(M/m))sin (θ/2)=(2/3)((M/m)+1)(1−2 sin^2  (θ/2))  (1+(M/m))sin (θ/2)=((M/m)+1)(1−2 sin^2  (θ/2))  sin (θ/2)=1−2 sin^2  (θ/2)  2 sin^2  (θ/2)+sin (θ/2)−1=0  sin (θ/2)=(1/2)  ⇒θ=60°  we can get this directly from  α=90−θ=(θ/2)  ⇒θ=60°

$$\left({N}_{\mathrm{1}} −\frac{{Mg}}{\mathrm{2}}\right){L}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}={mga} \\ $$$$\left({N}_{\mathrm{2}} −\frac{{Mg}}{\mathrm{2}}\right){L}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{2}{mgb}\:\mathrm{sin}\:\alpha=\mathrm{2}{mga} \\ $$$$\Rightarrow{N}_{\mathrm{2}} −\frac{{Mg}}{\mathrm{2}}=\mathrm{2}\left({N}_{\mathrm{1}} −\frac{{Mg}}{\mathrm{2}}\right) \\ $$$$\Rightarrow{N}_{\mathrm{2}} =\mathrm{2}{N}_{\mathrm{1}} −\frac{{Mg}}{\mathrm{2}} \\ $$$${N}_{\mathrm{1}} ={Mg}+\frac{{L}−{b}}{\mathrm{2}{L}}{mg} \\ $$$${N}_{\mathrm{2}} ={Mg}+\frac{{L}+{b}}{\mathrm{2}{L}}{mg} \\ $$$$\Rightarrow{Mg}+\frac{{L}+{b}}{\mathrm{2}{L}}{mg}=\mathrm{2}{Mg}+\frac{\mathrm{2}\left({L}−{b}\right)}{\mathrm{2}{L}}{mg}−\frac{{Mg}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{3}{b}−{L}}{{L}}{m}={M} \\ $$$$\Rightarrow\frac{{b}}{{L}}=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{M}}{{m}}+\mathrm{1}\right) \\ $$$$\left({N}_{\mathrm{1}} −\frac{{Mg}}{\mathrm{2}}\right){L}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}={mgb}\:\mathrm{cos}\:\theta \\ $$$$\left(\frac{{L}−{b}}{\mathrm{2}{L}}+\frac{{M}}{\mathrm{2}{m}}\right)\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{{b}}{{L}}\:\mathrm{cos}\:\theta \\ $$$$\left(\mathrm{1}−\frac{{b}}{{L}}+\frac{{M}}{{m}}\right)\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{{M}}{{m}}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{M}}{{m}}+\mathrm{1}\right)+\frac{{M}}{{m}}\right)\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{{M}}{{m}}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{1}+\frac{{M}}{{m}}\right)\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\left(\frac{{M}}{{m}}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right) \\ $$$$\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}} \\ $$$$\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\theta=\mathrm{60}° \\ $$$${we}\:{can}\:{get}\:{this}\:{directly}\:{from} \\ $$$$\alpha=\mathrm{90}−\theta=\frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow\theta=\mathrm{60}° \\ $$

Commented by mr W last updated on 04/Oct/19

sorry, i had a typo in  ⇒(b/L)=(1/3)((M/m)+2)  which led to wrong conclusion.

$${sorry},\:{i}\:{had}\:{a}\:{typo}\:{in} \\ $$$$\Rightarrow\frac{{b}}{{L}}=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{M}}{{m}}+\mathrm{2}\right) \\ $$$${which}\:{led}\:{to}\:{wrong}\:{conclusion}. \\ $$

Commented by ajfour last updated on 04/Oct/19

Too much fuss, about nothing!  ha ha..

$${Too}\:{much}\:{fuss},\:{about}\:{nothing}! \\ $$$${ha}\:{ha}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com