Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 70167 by Kunal12588 last updated on 01/Oct/19

find minima of  (x_1 −x_2 )^2 +5+(√(1−(x_1 )^2 ))+(√(4x_2 ))  ∀ x_1 ,x_2 ∈R

findminimaof(x1x2)2+5+1(x1)2+4x2x1,x2R

Commented by MJS last updated on 02/Oct/19

−1≤x_1 ≤1 ⇒ x_1 =sin p  0≤x_2  ⇒ x_2 =q^2   f(p, q)=(q^2 −sin p)^2 +5+∣cos p∣+2q  it′s easy to see no maximum exists:  q → +∞ ⇒ f(p, q) → +∞  searching the minimum:  0≤(q^2 −sin p)^2        the minimum is at q^2 =sin p ⇔ p=2nπ±arcsin q^2   0≤∣cos p∣≤1       the minimum is at p=(n−(1/2))π  0≤2q       the minimum is at q=0  trying we find absolute minima at  f(0, 0)=f(±π, 0)=6  ⇒ minima at (x_1 =0∨x_1 =±1)∧x_2 =0

1x11x1=sinp0x2x2=q2f(p,q)=(q2sinp)2+5+cosp+2qitseasytoseenomaximumexists:q+f(p,q)+searchingtheminimum:0(q2sinp)2theminimumisatq2=sinpp=2nπ±arcsinq20⩽∣cosp∣⩽1theminimumisatp=(n12)π02qtheminimumisatq=0tryingwefindabsoluteminimaatf(0,0)=f(±π,0)=6minimaat(x1=0x1=±1)x2=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com