All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 70262 by mathmax by abdo last updated on 02/Oct/19
calculate∫0π4ln(cosx)dxand∫0π4ln(sinx)dx
Commented by mathmax by abdo last updated on 06/Oct/19
letI=∫0π4ln(cosx)dxandJ=∫0π4ln(sinx)dxI+J=∫0π4ln(cosx+sinx)dx=∫0π4ln(2cos(x−π4))dx=π8ln(2)+∫0π4ln(cos(π4−x))dxbut∫0π4ln(cos(π4−x))dx=π4−x=t∫0π4ln(cost)dt=I⇒I+J=π8ln(2)+I⇒J=π8ln(2)I=∫0π4ln(cosx)dx=x=t212∫0π2ln(cos(t2))dt⇒2I=∫0π2ln(sin(π2−t2))dt=π−t2=u∫π2π4ln(sinu)(−2)du=2∫π4π2ln(sinu)du=2{∫π40ln(sinu)du+∫0π2ln(sinu)du}=2{−J−π2ln(2)}=−2J−πln(2)=−π4ln(2)−πln(2)=−5π4ln(2)⇒I=−5π8ln(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com