Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 70262 by mathmax by abdo last updated on 02/Oct/19

calculate  ∫_0 ^(π/4) ln(cosx)dx  and ∫_0 ^(π/4) ln(sinx)dx

calculate0π4ln(cosx)dxand0π4ln(sinx)dx

Commented by mathmax by abdo last updated on 06/Oct/19

let I =∫_0 ^(π/4) ln(cosx)dx and J=∫_0 ^(π/4) ln(sinx)dx  I+J =∫_0 ^(π/4) ln(cosx +sinx)dx =∫_0 ^(π/4) ln((√2)cos(x−(π/4)))dx  =(π/8)ln(2) +∫_0 ^(π/4)  ln(cos((π/4)−x))dx  but  ∫_0 ^(π/4) ln(cos((π/4)−x))dx =_((π/4)−x=t)     ∫_0 ^(π/4) ln(cost)dt =I ⇒  I +J =(π/8)ln(2) +I ⇒J=(π/8)ln(2)  I =∫_0 ^(π/4) ln(cosx)dx =_(x=(t/2))    (1/2)∫_0 ^(π/2) ln(cos((t/2)))dt ⇒  2I= ∫_0 ^(π/2) ln(sin((π/2)−(t/2)))dt =_(((π−t)/2)=u)    ∫_(π/2) ^(π/4) ln(sinu)(−2)du  =2 ∫_(π/4) ^(π/2)  ln(sinu)du =2{ ∫_(π/4) ^0 ln(sinu)du +∫_0 ^(π/2) ln(sinu)du}  =2{−J −(π/2)ln(2)} =−2J −πln(2)=−(π/4)ln(2)−πln(2)  =−((5π)/4)ln(2) ⇒I =−((5π)/8)ln(2)

letI=0π4ln(cosx)dxandJ=0π4ln(sinx)dxI+J=0π4ln(cosx+sinx)dx=0π4ln(2cos(xπ4))dx=π8ln(2)+0π4ln(cos(π4x))dxbut0π4ln(cos(π4x))dx=π4x=t0π4ln(cost)dt=II+J=π8ln(2)+IJ=π8ln(2)I=0π4ln(cosx)dx=x=t2120π2ln(cos(t2))dt2I=0π2ln(sin(π2t2))dt=πt2=uπ2π4ln(sinu)(2)du=2π4π2ln(sinu)du=2{π40ln(sinu)du+0π2ln(sinu)du}=2{Jπ2ln(2)}=2Jπln(2)=π4ln(2)πln(2)=5π4ln(2)I=5π8ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com