Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 70312 by Shamim last updated on 03/Oct/19

If, (1/a^2 )+(1/b^2 )+(1/c^2 ) = (1/(ab))+(1/(bc))+(1/(ca)) then prove   that, a=b=c.

$$\mathrm{If},\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{ab}}+\frac{\mathrm{1}}{\mathrm{bc}}+\frac{\mathrm{1}}{\mathrm{ca}}\:\mathrm{then}\:\mathrm{prove}\: \\ $$$$\mathrm{that},\:\mathrm{a}=\mathrm{b}=\mathrm{c}. \\ $$

Commented by MJS last updated on 03/Oct/19

this is true for a, b, c ∈R  it′s false for a, b, c ∈C  b=a(−(1/2)−((√3)/2)i)∧c=a(−(1/2)+((√3)/2)i)   ((a),(b),(c) ) =a× ((1),((−(1/2)+((√3)/2)i)),((−(1/2)−((√3)/2)i)) )  is a solution   ((a),(b),(c) ) = ((a),(b),(((ab(a+b)±(√3)ab(a−b)i)/(2(a^2 −ab+b^2 )))) )  is a solution

$$\mathrm{this}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:{a},\:{b},\:{c}\:\in\mathbb{R} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{false}\:\mathrm{for}\:{a},\:{b},\:{c}\:\in\mathbb{C} \\ $$$${b}={a}\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right)\wedge{c}={a}\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right) \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\\{{c}}\end{pmatrix}\:={a}×\begin{pmatrix}{\mathrm{1}}\\{−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}}\\{−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}}\end{pmatrix}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$$$\begin{pmatrix}{{a}}\\{{b}}\\{{c}}\end{pmatrix}\:=\begin{pmatrix}{{a}}\\{{b}}\\{\frac{{ab}\left({a}+{b}\right)\pm\sqrt{\mathrm{3}}{ab}\left({a}−{b}\right)\mathrm{i}}{\mathrm{2}\left({a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} \right)}}\end{pmatrix}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$

Answered by $@ty@m123 last updated on 03/Oct/19

Let (1/a)=x, (1/b)=y, (1/c)=z  ⇒x^2 +y^2 +z^2  =xy+yz+zx  ⇒x^2 +y^2 +z^2  −(xy+yz+zx)=0  ⇒2{x^2 +y^2 +z^2  −(xy+yz+zx)}=0  ⇒(x−y)^2 +(y−z)^2 +(z−x)^2 =0  ⇒x−y=0, y−z=0, z−x=0  ⇒x=y=z  ⇒a=b=c

$${Let}\:\frac{\mathrm{1}}{{a}}={x},\:\frac{\mathrm{1}}{{b}}={y},\:\frac{\mathrm{1}}{{c}}={z} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:={xy}+{yz}+{zx} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:−\left({xy}+{yz}+{zx}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\left\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:−\left({xy}+{yz}+{zx}\right)\right\}=\mathrm{0} \\ $$$$\Rightarrow\left({x}−{y}\right)^{\mathrm{2}} +\left({y}−{z}\right)^{\mathrm{2}} +\left({z}−{x}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{x}−{y}=\mathrm{0},\:{y}−{z}=\mathrm{0},\:{z}−{x}=\mathrm{0} \\ $$$$\Rightarrow{x}={y}={z} \\ $$$$\Rightarrow{a}={b}={c} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com