Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 70395 by ajfour last updated on 04/Oct/19

Commented by ajfour last updated on 04/Oct/19

Q.70159    (attempt to resolve)

$${Q}.\mathrm{70159}\:\:\:\:\left({attempt}\:{to}\:{resolve}\right) \\ $$

Answered by ajfour last updated on 04/Oct/19

Commented by ajfour last updated on 04/Oct/19

let θ/2=φ  As moment about left end is zero;  R(2Lsin φ)=2MgLsin φ+mg(L+b)sin φ  ⇒ R=Mg+((mg)/2)(1+(b/L))     As moment about right end is zero;        N=Mg+((mg)/2)(1−(b/L))  Torque on left half about hinge:      NLsin φ−Mg((L/2)sin φ)=mga  ⇒ sin φ=((2m(a/L))/(M+m(1−b/L)))  but  bcos 2φ=a ;  let M=μm  ⇒  (μ+1−(b/L))sin φ=2((b/L))cos 2φ  let  sin φ=t ,  b/L=f  1−2t^2 −(((μ+1)/f)−1)(t/2)=0    ⇒  t^2 +(((μ+1)/f)−1)(t/4)−(1/2)=0  ..(I)  ________________________  Also considering torque of  right half about hinge:     RLsin φ=2mgbcos 2φ+Mg((L/2))sin φ     (R−((Mg)/2))Lsin φ=2mgbcos 2φ  [M+m(1+(b/L))]t=4m((b/L))(1−2t^2 )  ⇒    (μ+1+(b/L))t=4((b/L))(1−2t^2 )  ⇒ 1−2t^2 −(((μ+1)/f)+1)(t/4)=0      t^2 +(((μ+1)/(2f))+(1/2))(t/4)−(1/2)=0  For agreement of (I)& (II)    ((μ+1)/f)−1=((μ+1)/(2f))+(1/2)  ⇒   ((μ+1)/f)=3    (b/L)=((μ+1)/3) = (1/3)(1+(M/m))  ; Now    t^2 +(t/2)−(1/2)=0   ⇒ t=sin φ=(1/2) ,  θ=2φ =60° .

$${let}\:\theta/\mathrm{2}=\phi \\ $$$${As}\:{moment}\:{about}\:{left}\:{end}\:{is}\:{zero}; \\ $$$${R}\left(\mathrm{2}{L}\mathrm{sin}\:\phi\right)=\mathrm{2}{MgL}\mathrm{sin}\:\phi+{mg}\left({L}+{b}\right)\mathrm{sin}\:\phi \\ $$$$\Rightarrow\:{R}={Mg}+\frac{{mg}}{\mathrm{2}}\left(\mathrm{1}+\frac{{b}}{{L}}\right)\:\:\: \\ $$$${As}\:{moment}\:{about}\:{right}\:{end}\:{is}\:{zero}; \\ $$$$\:\:\:\:\:\:{N}={Mg}+\frac{{mg}}{\mathrm{2}}\left(\mathrm{1}−\frac{{b}}{{L}}\right) \\ $$$${Torque}\:{on}\:{left}\:{half}\:{about}\:{hinge}: \\ $$$$\:\:\:\:{NL}\mathrm{sin}\:\phi−{Mg}\left(\frac{{L}}{\mathrm{2}}\mathrm{sin}\:\phi\right)={mga} \\ $$$$\Rightarrow\:\mathrm{sin}\:\phi=\frac{\mathrm{2}{m}\left({a}/{L}\right)}{{M}+{m}\left(\mathrm{1}−{b}/{L}\right)} \\ $$$${but}\:\:{b}\mathrm{cos}\:\mathrm{2}\phi={a}\:;\:\:{let}\:{M}=\mu{m} \\ $$$$\Rightarrow\:\:\left(\mu+\mathrm{1}−\frac{{b}}{{L}}\right)\mathrm{sin}\:\phi=\mathrm{2}\left(\frac{{b}}{{L}}\right)\mathrm{cos}\:\mathrm{2}\phi \\ $$$${let}\:\:\mathrm{sin}\:\phi={t}\:,\:\:{b}/{L}={f} \\ $$$$\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} −\left(\frac{\mu+\mathrm{1}}{{f}}−\mathrm{1}\right)\frac{{t}}{\mathrm{2}}=\mathrm{0}\:\: \\ $$$$\Rightarrow\:\:{t}^{\mathrm{2}} +\left(\frac{\mu+\mathrm{1}}{{f}}−\mathrm{1}\right)\frac{{t}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0}\:\:..\left({I}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${Also}\:{considering}\:{torque}\:{of} \\ $$$${right}\:{half}\:{about}\:{hinge}: \\ $$$$\:\:\:{RL}\mathrm{sin}\:\phi=\mathrm{2}{mgb}\mathrm{cos}\:\mathrm{2}\phi+{Mg}\left(\frac{{L}}{\mathrm{2}}\right)\mathrm{sin}\:\phi \\ $$$$\:\:\:\left({R}−\frac{{Mg}}{\mathrm{2}}\right){L}\mathrm{sin}\:\phi=\mathrm{2}{mgb}\mathrm{cos}\:\mathrm{2}\phi \\ $$$$\left[{M}+{m}\left(\mathrm{1}+\frac{{b}}{{L}}\right)\right]{t}=\mathrm{4}{m}\left(\frac{{b}}{{L}}\right)\left(\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} \right) \\ $$$$\Rightarrow \\ $$$$\:\:\left(\mu+\mathrm{1}+\frac{{b}}{{L}}\right){t}=\mathrm{4}\left(\frac{{b}}{{L}}\right)\left(\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} −\left(\frac{\mu+\mathrm{1}}{{f}}+\mathrm{1}\right)\frac{{t}}{\mathrm{4}}=\mathrm{0}\:\: \\ $$$$\:\:{t}^{\mathrm{2}} +\left(\frac{\mu+\mathrm{1}}{\mathrm{2}{f}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\frac{{t}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$${For}\:{agreement}\:{of}\:\left({I}\right)\&\:\left({II}\right) \\ $$$$\:\:\frac{\mu+\mathrm{1}}{{f}}−\mathrm{1}=\frac{\mu+\mathrm{1}}{\mathrm{2}{f}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\frac{\mu+\mathrm{1}}{{f}}=\mathrm{3} \\ $$$$\:\:\frac{{b}}{{L}}=\frac{\mu+\mathrm{1}}{\mathrm{3}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}+\frac{{M}}{{m}}\right)\:\:;\:{Now} \\ $$$$\:\:{t}^{\mathrm{2}} +\frac{{t}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\:\Rightarrow\:{t}=\mathrm{sin}\:\phi=\frac{\mathrm{1}}{\mathrm{2}}\:,\:\:\theta=\mathrm{2}\phi\:=\mathrm{60}°\:. \\ $$

Commented by mr W last updated on 04/Oct/19

answer is correct sir!  it′s obvious that   90°−θ=(θ/2) ⇒ θ=60°

$${answer}\:{is}\:{correct}\:{sir}! \\ $$$${it}'{s}\:{obvious}\:{that}\: \\ $$$$\mathrm{90}°−\theta=\frac{\theta}{\mathrm{2}}\:\Rightarrow\:\theta=\mathrm{60}° \\ $$

Commented by mr W last updated on 04/Oct/19

interesting to see that θ is always 60°.  (b/L)=(1/3)(1+(M/m))≥(1/3), ≤1  with M=0: (b/L)=(1/3)  with M=2m: (b/L)=1  ⇒0≤M≤2m

$${interesting}\:{to}\:{see}\:{that}\:\theta\:{is}\:{always}\:\mathrm{60}°. \\ $$$$\frac{{b}}{{L}}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}+\frac{{M}}{{m}}\right)\geqslant\frac{\mathrm{1}}{\mathrm{3}},\:\leqslant\mathrm{1} \\ $$$${with}\:{M}=\mathrm{0}:\:\frac{{b}}{{L}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${with}\:{M}=\mathrm{2}{m}:\:\frac{{b}}{{L}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{0}\leqslant{M}\leqslant\mathrm{2}{m} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com