Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 7055 by Tawakalitu. last updated on 08/Aug/16

Show that ∀ x ∈ [ 0, (Π/2) ] , tanx + sin4x ≥ 0

$${Show}\:{that}\:\forall\:{x}\:\in\:\left[\:\mathrm{0},\:\frac{\Pi}{\mathrm{2}}\:\right]\:,\:{tanx}\:+\:{sin}\mathrm{4}{x}\:\geqslant\:\mathrm{0}\: \\ $$$$ \\ $$

Commented by Yozzii last updated on 08/Aug/16

If 0≤x≤(π/2)⇒0≤4x≤2π  For −1≤sin4x<0⇒π<4x≤((3π)/2) or ((3π)/2)≤4x<2π   ⇒(π/4)<x≤((3π)/8) or ((3π)/8)≤x<(π/2)  ⇒1<tanx≤tan((3π)/8) or tan((3π)/8)≤tanx<+∞  ⇒tanx>1 ∀x∈((π/4),(π/2))  ∴tanx+sin4x>1+sin4x≥1+(−1)=0  ⇒tanx+sin4x>0 if x∈((π/4),(π/2)).  If 0≤sin4x≤1⇒ 0≤4x≤(π/2) or (π/2)≤4x≤π  ⇒0≤x≤(π/8) or (π/8)≤x≤(π/4)  ⇒0≤tanx≤tan(π/8) or tan(π/8)≤tanx≤1  ⇒tanx≥0⇒tanx+sin4x≥sin4x≥0  ⇒tanx+sin4x≥0  ∀x∈[0,π/4]  ∴ ∀x∈[0,π/2], tanx+sin4x≥0.

$${If}\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}\Rightarrow\mathrm{0}\leqslant\mathrm{4}{x}\leqslant\mathrm{2}\pi \\ $$$${For}\:−\mathrm{1}\leqslant{sin}\mathrm{4}{x}<\mathrm{0}\Rightarrow\pi<\mathrm{4}{x}\leqslant\frac{\mathrm{3}\pi}{\mathrm{2}}\:{or}\:\frac{\mathrm{3}\pi}{\mathrm{2}}\leqslant\mathrm{4}{x}<\mathrm{2}\pi\: \\ $$$$\Rightarrow\frac{\pi}{\mathrm{4}}<{x}\leqslant\frac{\mathrm{3}\pi}{\mathrm{8}}\:{or}\:\frac{\mathrm{3}\pi}{\mathrm{8}}\leqslant{x}<\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{1}<{tanx}\leqslant{tan}\frac{\mathrm{3}\pi}{\mathrm{8}}\:{or}\:{tan}\frac{\mathrm{3}\pi}{\mathrm{8}}\leqslant{tanx}<+\infty \\ $$$$\Rightarrow{tanx}>\mathrm{1}\:\forall{x}\in\left(\frac{\pi}{\mathrm{4}},\frac{\pi}{\mathrm{2}}\right) \\ $$$$\therefore{tanx}+{sin}\mathrm{4}{x}>\mathrm{1}+{sin}\mathrm{4}{x}\geqslant\mathrm{1}+\left(−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{tanx}+{sin}\mathrm{4}{x}>\mathrm{0}\:{if}\:{x}\in\left(\frac{\pi}{\mathrm{4}},\frac{\pi}{\mathrm{2}}\right). \\ $$$${If}\:\mathrm{0}\leqslant{sin}\mathrm{4}{x}\leqslant\mathrm{1}\Rightarrow\:\mathrm{0}\leqslant\mathrm{4}{x}\leqslant\frac{\pi}{\mathrm{2}}\:{or}\:\frac{\pi}{\mathrm{2}}\leqslant\mathrm{4}{x}\leqslant\pi \\ $$$$\Rightarrow\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{8}}\:{or}\:\frac{\pi}{\mathrm{8}}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{0}\leqslant{tanx}\leqslant{tan}\frac{\pi}{\mathrm{8}}\:{or}\:{tan}\frac{\pi}{\mathrm{8}}\leqslant{tanx}\leqslant\mathrm{1} \\ $$$$\Rightarrow{tanx}\geqslant\mathrm{0}\Rightarrow{tanx}+{sin}\mathrm{4}{x}\geqslant{sin}\mathrm{4}{x}\geqslant\mathrm{0} \\ $$$$\Rightarrow{tanx}+{sin}\mathrm{4}{x}\geqslant\mathrm{0}\:\:\forall{x}\in\left[\mathrm{0},\pi/\mathrm{4}\right] \\ $$$$\therefore\:\forall{x}\in\left[\mathrm{0},\pi/\mathrm{2}\right],\:{tanx}+{sin}\mathrm{4}{x}\geqslant\mathrm{0}. \\ $$

Commented by Tawakalitu. last updated on 08/Aug/16

Thank you so much sir. i really appreiate.

$${Thank}\:{you}\:{so}\:{much}\:{sir}.\:{i}\:{really}\:{appreiate}. \\ $$

Answered by Yozzii last updated on 08/Aug/16

Check comments for an answer.

$${Check}\:{comments}\:{for}\:{an}\:{answer}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com