Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 70738 by ajfour last updated on 07/Oct/19

Commented by ajfour last updated on 07/Oct/19

Find  (R/a) ∙

$${Find}\:\:\frac{{R}}{{a}}\:\centerdot \\ $$

Commented by ajfour last updated on 07/Oct/19

Answered by mr W last updated on 08/Oct/19

C(k,R)  P(−h,h^2 )  y′=2x=−2h  eqn. of PC:  y=((x+h)/(2h))+h^2   R=((k+h)/(2h))+h^2   ⇒k+h=2h(R−h^2 )  (k+h)^2 +(R−h^2 )^2 =R^2   4h^2 (R−h^2 )^2 +(R−h^2 )^2 =R^2   4R^2 −8Rh^2 +4h^4 −2R+h^2 =0  4h^4 −(8R−1)h^2 +2R(2R−1)=0  h^2 =((8R−1−(√(16R+1)))/8)  ⇒h=(1/2)(√((8R−1−(√(16R+1)))/2))  ⇒k=[2(R−h^2 )−1]h    center of small circle A(−r,p)  (k+r)^2 +(R−p)^2 =(R+r)^2   (R−p)^2 =(R−k)(R+k+2r)  p=R−(√((R−k)(R+k+2r)))    T(−s,s^2 )  y′=−2s  eqn. of TA:  y=((x+s)/(2s))+s^2   p=((−r+s)/(2s))+s^2   p−s^2 =((s−r)/(2s))  (−r+s)^2 +(p−s^2 )^2 =r^2   4s^4 −8rs^3 +s^2 −2rs+r^2 =0  r^2 −2s(4s^2 +1)r+s^2 (4s^2 +1)=0  ⇒r=s(4s^2 +1)−2s^2 (√(4s^2 +1))   ...(i)  p=s^2 +((s−r)/(2s))=R−(√((R−k)(R+k+2r)))   ...(ii)  we get s from (ii) for given R,  and then r from (i).  examples:  R=8 ⇒r=0.6351  R=4 ⇒r=0.2956

$${C}\left({k},{R}\right) \\ $$$${P}\left(−{h},{h}^{\mathrm{2}} \right) \\ $$$${y}'=\mathrm{2}{x}=−\mathrm{2}{h} \\ $$$${eqn}.\:{of}\:{PC}: \\ $$$${y}=\frac{{x}+{h}}{\mathrm{2}{h}}+{h}^{\mathrm{2}} \\ $$$${R}=\frac{{k}+{h}}{\mathrm{2}{h}}+{h}^{\mathrm{2}} \\ $$$$\Rightarrow{k}+{h}=\mathrm{2}{h}\left({R}−{h}^{\mathrm{2}} \right) \\ $$$$\left({k}+{h}\right)^{\mathrm{2}} +\left({R}−{h}^{\mathrm{2}} \right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\mathrm{4}{h}^{\mathrm{2}} \left({R}−{h}^{\mathrm{2}} \right)^{\mathrm{2}} +\left({R}−{h}^{\mathrm{2}} \right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\mathrm{4}{R}^{\mathrm{2}} −\mathrm{8}{Rh}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{4}} −\mathrm{2}{R}+{h}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}{h}^{\mathrm{4}} −\left(\mathrm{8}{R}−\mathrm{1}\right){h}^{\mathrm{2}} +\mathrm{2}{R}\left(\mathrm{2}{R}−\mathrm{1}\right)=\mathrm{0} \\ $$$${h}^{\mathrm{2}} =\frac{\mathrm{8}{R}−\mathrm{1}−\sqrt{\mathrm{16}{R}+\mathrm{1}}}{\mathrm{8}} \\ $$$$\Rightarrow{h}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{8}{R}−\mathrm{1}−\sqrt{\mathrm{16}{R}+\mathrm{1}}}{\mathrm{2}}} \\ $$$$\Rightarrow{k}=\left[\mathrm{2}\left({R}−{h}^{\mathrm{2}} \right)−\mathrm{1}\right]{h} \\ $$$$ \\ $$$${center}\:{of}\:{small}\:{circle}\:{A}\left(−{r},{p}\right) \\ $$$$\left({k}+{r}\right)^{\mathrm{2}} +\left({R}−{p}\right)^{\mathrm{2}} =\left({R}+{r}\right)^{\mathrm{2}} \\ $$$$\left({R}−{p}\right)^{\mathrm{2}} =\left({R}−{k}\right)\left({R}+{k}+\mathrm{2}{r}\right) \\ $$$${p}={R}−\sqrt{\left({R}−{k}\right)\left({R}+{k}+\mathrm{2}{r}\right)} \\ $$$$ \\ $$$${T}\left(−{s},{s}^{\mathrm{2}} \right) \\ $$$${y}'=−\mathrm{2}{s} \\ $$$${eqn}.\:{of}\:{TA}: \\ $$$${y}=\frac{{x}+{s}}{\mathrm{2}{s}}+{s}^{\mathrm{2}} \\ $$$${p}=\frac{−{r}+{s}}{\mathrm{2}{s}}+{s}^{\mathrm{2}} \\ $$$${p}−{s}^{\mathrm{2}} =\frac{{s}−{r}}{\mathrm{2}{s}} \\ $$$$\left(−{r}+{s}\right)^{\mathrm{2}} +\left({p}−{s}^{\mathrm{2}} \right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{4}{s}^{\mathrm{4}} −\mathrm{8}{rs}^{\mathrm{3}} +{s}^{\mathrm{2}} −\mathrm{2}{rs}+{r}^{\mathrm{2}} =\mathrm{0} \\ $$$${r}^{\mathrm{2}} −\mathrm{2}{s}\left(\mathrm{4}{s}^{\mathrm{2}} +\mathrm{1}\right){r}+{s}^{\mathrm{2}} \left(\mathrm{4}{s}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{r}={s}\left(\mathrm{4}{s}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{2}{s}^{\mathrm{2}} \sqrt{\mathrm{4}{s}^{\mathrm{2}} +\mathrm{1}}\:\:\:...\left({i}\right) \\ $$$${p}={s}^{\mathrm{2}} +\frac{{s}−{r}}{\mathrm{2}{s}}={R}−\sqrt{\left({R}−{k}\right)\left({R}+{k}+\mathrm{2}{r}\right)}\:\:\:...\left({ii}\right) \\ $$$${we}\:{get}\:{s}\:{from}\:\left({ii}\right)\:{for}\:{given}\:{R}, \\ $$$${and}\:{then}\:{r}\:{from}\:\left({i}\right). \\ $$$${examples}: \\ $$$${R}=\mathrm{8}\:\Rightarrow{r}=\mathrm{0}.\mathrm{6351} \\ $$$${R}=\mathrm{4}\:\Rightarrow{r}=\mathrm{0}.\mathrm{2956} \\ $$

Commented by mr W last updated on 08/Oct/19

Commented by mr W last updated on 08/Oct/19

Commented by ajfour last updated on 08/Oct/19

thanks Sir. Great attempt!

$${thanks}\:{Sir}.\:{Great}\:{attempt}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com