Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 70780 by MJS last updated on 08/Oct/19

(1/(t+(√u)+(√v)))=  =(((t−(√u)+(√v))(t+(√u)−(√v))(t−(√u)−(√v)))/((t+(√u)+(√v))(t−(√u)+(√v))(t+(√u)−(√v))(t−(√u)−(√v))))=  =((t^3 −((√u)+(√v))t^2 −((√u)−(√v))^2 t+(u−v)((√u)−(√v)))/(t^4 −2(u+v)t^2 +(u−v)^2 ))    (1/(t+(u)^(1/3) +(v)^(1/3) ))=        determinant (((α=−(1/2)+((√3)/2)i; β=−(1/2)−((√3)/2)i ⇒)),((⇒ α^2 =β; β^2 =α; α+β=−1; αβ=1)))  =(((t+α(u)^(1/3) +β(v)^(1/3) )(t+β(u)^(1/3) +α(v)^(1/3) ))/((t+(u)^(1/3) +(v)^(1/3) )(t+α(u)^(1/3) +β(v)^(1/3) )(t+β(u)^(1/3) +α(v)^(1/3) )))=  =((t^2 −((u)^(1/3) +(v)^(1/3) )t+(u^2 )^(1/3) −((uv))^(1/3) +(v^2 )^(1/3) )/(t^3 +u+v−3((uv))^(1/3)  t))=        determinant (((a=t^3 +u+v; b=27uvt^3 )),(((1/(a−(b)^(1/3) ))=(((αa−β(b)^(1/3) )(βa−α(b)^(1/3) ))/((a−(b)^(1/3) )(αa−β(b)^(1/3) )(βa−α(b)^(1/3) )))=)),((=((a^2 +a(b)^(1/3) +(b^2 )^(1/3) )/(a^3 −b)))))  =(N/(t^9 +3(u+v)t^6 +3(u^2 −7uv+v^2 )t^3 +(u+v)^3 ))  N=  =t^8 −  −((u)^(1/3) +(v)^(1/3) )t^7 +  +((u)^(1/3) +(v)^(1/3) )^2 t^6 +  +((u)^(1/3) +(v)^(1/3) )((u)^(1/3) −2(v)^(1/3) )(2(u)^(1/3) −(v)^(1/3) )t^5 −  −((u)^(1/3) +(v)^(1/3) )^2 ((u)^(1/3) −2(v)^(1/3) )(2(u)^(1/3) −(v)^(1/3) )t^4 +  +((u)^(1/3) +(v)^(1/3) )^3 ((u)^(1/3) −2(v)^(1/3) )(2(u)^(1/3) −(v)^(1/3) )t^3 +  +((u^2 )^(1/3) −((uv))^(1/3) +(v^2 )^(1/3) )^3 t^2 −  −((u)^(1/3) +(v)^(1/3) )((u^2 )^(1/3) −((uv))^(1/3) +(v^2 )^(1/3) )^3 t+  +((u)^(1/3) +(v)^(1/3) )^2 ((u^2 )^(1/3) −((uv))^(1/3) +(v^2 )^(1/3) )^3     I think there′s no easier way...

1t+u+v==(tu+v)(t+uv)(tuv)(t+u+v)(tu+v)(t+uv)(tuv)==t3(u+v)t2(uv)2t+(uv)(uv)t42(u+v)t2+(uv)21t+u3+v3=|α=12+32i;β=1232iα2=β;β2=α;α+β=1;αβ=1|=(t+αu3+βv3)(t+βu3+αv3)(t+u3+v3)(t+αu3+βv3)(t+βu3+αv3)==t2(u3+v3)t+u23uv3+v23t3+u+v3uv3t=|a=t3+u+v;b=27uvt31ab3=(αaβb3)(βaαb3)(ab3)(αaβb3)(βaαb3)==a2+ab3+b23a3b|=Nt9+3(u+v)t6+3(u27uv+v2)t3+(u+v)3N==t8(u3+v3)t7++(u3+v3)2t6++(u3+v3)(u32v3)(2u3v3)t5(u3+v3)2(u32v3)(2u3v3)t4++(u3+v3)3(u32v3)(2u3v3)t3++(u23uv3+v23)3t2(u3+v3)(u23uv3+v23)3t++(u3+v3)2(u23uv3+v23)3Ithinktheresnoeasierway...

Commented by MJS last updated on 08/Oct/19

this had been requested (but deleted)  (1/(1+2(3)^(1/3) +3(2)^(1/3) ))=  =((−8208((36))^(1/3) +2988((18))^(1/3) −378((12))^(1/3) +23020(9)^(1/3) −36024(6)^(1/3) +54225(4)^(1/3) +13114(3)^(1/3) −1659(2)^(1/3) −5423)/(458047))

thishadbeenrequested(butdeleted)11+233+323==8208363+2988183378123+23020933602463+5422543+13114331659235423458047

Terms of Service

Privacy Policy

Contact: info@tinkutara.com